首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Freund's adjuvant administration on 24-hour changes of plasma prolactin, growth hormone (GH), thyrotropin (TSH), insulin, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone were studied in young (2 months) and aged (18 months) male Wistar rats. Rats were injected s.c. with Freund's adjuvant or adjuvant's vehicle and, 18 days later, they were killed at 6 different time intervals throughout a 24-hour cycle to measure circulating hormone levels by specific RIAs. Young rats receiving adjuvant's vehicle exhibited significant time-of-day-dependent variations in plasma TSH, LH and testosterone, with maximal levels at 1300 h, 0100 h and 1700 h, respectively. Prolactin and insulin levels, analyzed globally in a factorial ANOVA, showed significant time-of-day changes with maximal levels at 1300 - 1700 h and 2100 h, respectively. The daily rhythms in plasma LH and testosterone found in young rats were not longer observed in Freund's adjuvant-injected rats, while as far as TSH, a second peak was observed at 0100 h after Freund's adjuvant administration. Twenty-four hour rhythms in circulating TSH, LH and testosterone were blunted in old rats receiving either Freund's adjuvant or its vehicle. Aged rats exhibited significantly higher circulating levels of prolactin, and lower levels of GH, TSH, FSH and testosterone. The results indicate that secretion of prolactin, GH, TSH, FSH and testosterone are age-dependent, as are the responses of TSH, LH and testosterone to Freund's adjuvant administration.  相似文献   

2.
The effects of repeated administration of porcine follicular fluid (PFF) on the follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels after castration were studied in rabbits. Steroid-free dextran-charcoal extracted PFF was administered to male and female adult rabbits at 0800 and 1600 h for four days immediately following castration. Serum levels of FSH and LH were measured before, during and after the PFF administration and compared to controls. A significant increase in FSH and LH was observed within 24 h following castration in the controls. In the PFF-treated group, a clear suppression of serum FSH levels was observed during PFF administration in both males and females. FSH concentrations returned to the control levels within 24 h after PFF withdrawal. Even through LH levels showed no differences during PFF injection, compared to controls, a significant increase was observed following discontinuation of PFF administration.  相似文献   

3.
The present study investigated pulsatile and circadian variations in the circulatory levels of inhibin, gonadotrophins and testosterone. Six adult buffalo bulls (6 to 7 yr of age) were fitted with indwelling jugular vein catheters, and blood samples were collected at 2-h intervals for a period of 24 h and then at 15-min interval for 5 h. Plasma concentrations of inhibin, FSH, LH and testosterone were determined by specific radioimmunoassays. Plasma inhibin levels in Murrah buffalo bulls ranged between 0.201 to 0.429 ng/mL, with a mean of 0.278 +/- 0.023 ng/mL. No inhibin pulses could be detected during the 15-min sampling interval. Plasma FSH levels ranged between 0.95 to 3.61 ng/mL, the mean concentration of FSH over 24 h was 1.66 +/- 0.25 ng/mL. A single FSH pulse was detected in 2 of 6 bulls. The LH levels in peripheral circulation ranged between 0.92 to 9.91 ng/mL, with a mean concentration of 3.33 +/- 1.02 ng/mL. Pulsatility was detected in LH secretion with an average of 0.6 pulses/h. Plasma testosterone levels in 4 buffalo bulls ranged from 0.19 to 2.99 ng/mL, the mean level over 24 h were 1.34 +/- 0.52 ng/mL. Testosterone levels in peripheral circulation followed the LH secretory pattern, with an average of 0.32 pulses/h. The results indicate parallelism in inhibin, FSH and LH, and testosterone secretory pattern. Divergence in LH and FSH secretory patterns in adult buffalo bulls might be due to the presence of appreciable amounts of peripheral inhibin.  相似文献   

4.
Basal serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) and the responsiveness of these hormones to a challenge dose of luteinizing hormone releasing hormone (LHRH), were determined in juvenile, pubertal, and adult rhesus monkeys. The monkey gonadotrophins were analyzed using RIA reagents supplied by the World Health Organization (WHO) Special Programme of Human Reproduction. The FSH levels which were near the assay sensitivity in immature monkeys (2.4 +/- 0.8 ng/ml) showed a discernible increase in pubertal animals (6.4 +/- 1.8 ng/ml). Compared to other two age groups, the serum FSH concentration was markedly higher (16.1 +/- 1.8 ng/ml) in adults. Serum LH levels were below the detectable limits of the assay in juvenile monkeys but rose to 16.2 +/- 3.1 ng/ml in pubertal animals. When compared to pubertal animals, a two-fold increase in LH levels paralleled changes in serum LH during the three developmental stages. Response of serum gonadotrophins and T levels to a challenge dose of LHRH (2.5 micrograms; i.v.) was variable in the different age groups. The present data suggest: an asynchronous rise of FSH and LH during the pubertal period and a temporal correlation between the testicular size and FSH concentrations; the challenge dose of LHRH, which induces a significant rise in serum LH and T levels, fails to elicit an FSH response in all the three age groups; and the pubertal as compared to adult monkeys release significantly larger quantities of LH in response to exogenous LHRH.  相似文献   

5.
No seasonal variation in any of the hormones measured was apparent in males or females. Testosterone levels in males increased around puberty (10-11 years) and remained significantly higher in adult than prepubertal males. This was not accompanied by any significant change in levels of LH, FSH or prolactin. In non-pregnant females there was no apparent difference in levels of LH, FSH or prolactin with age. There was a significant increase in progesterone around puberty (12 years) but there was considerable overlap in values between prepubertal and adult females. During pregnancy, progesterone levels were significantly higher than in non-pregnant females with maximum levels occurring at mid-pregnancy (9-12 months). However, there was considerable overlap in values between non-pregnancy and pregnancy. Concentrations of LH and FSH decreased significantly during mid-pregnancy while prolactin levels increased dramatically during pregnancy; after 7 months of gestation until term levels were always at least 8 ng/ml greater than in any non-pregnant female. It is suggested that this consistent increase in plasma/serum levels of prolactin can be used to diagnose pregnancy in the elephant.  相似文献   

6.
Adult male Sprague-Dawley rats, maintained under a controlled photoperiod of LD 14:10 (white lights on at 06:00 h, CST), were injected with lithium chloride and changes in the levels of plasma and pituitary homogenates of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) were examined to evaluate the effects of this anti-manic drug on reproductive function. Two groups of rats were injected with lithium chloride intraperitoneally, twice daily at 09:00 and 16:00 h, for 2 and 7 days at a dosage of 2.5 meg/Kg body weight. Plasma and pituitary levels of LH, FSH and PRL were measured by radioimmunoassay. Plasma levels of LH were significantly (P<0.05) increased after 2 days of lithium treatment. In contrast, a significant (P<0.005) reduction in plasma levels of LH was evident when lithium injections were continued for 7 days. The plasma levels of FSH remained unaffected by lithium treatment by either time period. Lithium administered for 2 days did not bring about any significant alteration in the plasma levels of PRL, although there was a significant (P<0.002) reduction in plasma PRL levels after 7 days treatment. The concentrations of pituitary LH, FSH and PRL remained unchanged after 2 and 7 days of lithium treatment.  相似文献   

7.
The effect of castration and of administration of charcoal-treated porcine follicular fluid (pFF) containing inhibin-like activity on plasma concentration of gonadotropic hormones was studied in neonatal pigs. Plasma follicle-stimulating hormone (FSH) concentration averaged 25.1 +/- 1.5 ng/ml (mean +/- SEM) in 1-wk-old females and gradually declined to 20.2 +/- 0.7 ng/ml 6 wk later. Ovariectomy did not significantly influence plasma FSH concentration. In males, concentration averaged 8.0 +/- 0.7 ng/ml before castration but rose significantly within 2 days after castration. Injection of luteinizing hormone-releasing hormone (LHRH) did not influence plasma FSH concentrations in intact males, but did in females and in 7-wk-old males castrated at 1 wk. Plasma luteinizing hormone (LH) concentrations in 1-wk-old females (2.2 +/- 0.4 ng/ml) gradually declined and were not influenced by castration. Concentrations of plasma LH in 1-wk-old male piglets (2.8 +/- 0.7 ng/ml) were not significantly influenced by castration within 2 days but were significantly higher 6 wk later. LHRH induced a significant rise in plasma LH concentrations in all animals. Injection of pFF resulted in a decline of plasma FSH concentrations in intact and castrated males and in intact females, but did not influence plasma LH concentrations. These data demonstrate a sex-specific difference in the control of plasma FSH, but not in plasma LH concentration in the neonatal pig. Plasma FSH concentrations, but not plasma LH concentrations, are suppressed by testicular hormones in 1-wk-old piglets. Plasma FSH concentrations can be suppressed in both neonatal male and female pigs by injections of pFF.  相似文献   

8.
Twelve 5-month-old Hereford X Friesian heifers were injected i.v. with 2.0 micrograms GnRH at 2-h intervals for 72 h. Blood samples were collected at 15-min intervals from 24 h before the start until 8 h after the end of the GnRH treatment period. Over the 24-h pretreatment period, mean LH concentrations ranged from 0.4 to 2.2 ng/ml and FSH concentrations from 14.1 to 157.4 ng/ml; LH episodes (2-6 episodes/24 h) were evident in all animals. Each injection of GnRH resulted in a distinct episode-like response in LH, but not FSH. Mean LH, but not FSH, concentrations were significantly increased by GnRH treatment. The GnRH-induced LH episodes were of greater magnitude than naturally-occurring episodes (mean maximum concentration 6.7 +/- 0.5 and 4.9 +/- 0.6 ng/ml respectively). Preovulatory LH surges occurred between 17.0 and 58.8 h after the start of treatment in 9/12 heifers, with a coincident FSH surge in 8 of these animals. This was not followed by normal luteal function. There were no apparent correlations between pretreatment hormone concentrations, and either the pituitary response to GnRH or the occurrence of preovulatory gonadotrophin release.  相似文献   

9.
Plasma FSH concentrations were measured in Merino ewes immunized with either an inhibin-enriched preparation from bovine follicular fluid (bFFI) or bovine serum albumin. When compared during the normal oestrous cycle, ewes reimmunized three times with bFFI and which showed increased ovulation rates before the experiment had significantly elevated plasma FSH concentrations on Day 13–14 and at Day 2 of the subsequent cycle. There was a positive correlation (P < 0.05) between plasma FSH concentration and the ovulation rate of the ewes in previous cycles (during the period of immunization) and in the cycle under investigation. In a larger group of ewes immunized against bFFI, which showed a variable increase in ovulation rate, there was no comparable increase in plasma FSH concentration when compared with control ewes in the follicular phase of the cycle.By contrast, when luteolysis was induced by a prostaglandin analogue the bFFI-immunized ewes had lower plasma FSH concentrations than control ewes immediately before and after the preovulatory LH surge. This decrease was significant in the period 9–21 h after the LH surge (P < 0.05–0.01) so that the onset of the second FSH peak was delayed.When the ewes were ovariectomized, the post-castration rise in plasma FSH concentration (but not LH) was delayed for a period of 24 h in bFFI-immunized ewes relative to controls.These experiments show that immunization of ewes with an inhibin-like fraction of bFF does not lead to consistently elevated plasma FSH. However, such ewes have altered feedback regulation leading to differential responses of FSH to prostaglandin-induced luteolysis and to castration.  相似文献   

10.
Treatment of Damline ewes with i.v. injections of various doses (2, 5 or 10 ml) of bovine follicular fluid for 72 h after prostaglandin-induced luteal regression resulted in a significant decrease in plasma concentrations of FSH after a 1.5-2 h delay but did not affect LH. The half life of this decrease in plasma FSH levels (156 min) after injection of follicular fluid was similar to that for clearance (159 min) of ovine FSH after infusion. A significant rebound increase in plasma FSH levels occurred by 13 h after all follicular fluid injections, and the magnitude of this rebound was inversely related to the dose of follicular fluid injected. A significant delay in the onset of oestrus occurred only with 5 and 10 ml bovine follicular fluid. There was no significant effect on ovulation rate or subsequent corpus luteum function as measured by plasma concentrations of progesterone. Infusion of ovine FSH (50 micrograms/h for 48 h) during the period of follicular fluid treatment prevented the delay in onset of oestrus and resulted in a substantial (2-10-fold) increase in ovulation rate. Corpus luteum function in terms of progesterone secretion was also enhanced. These results show that (1) intermittent suppression of FSH during the preovulatory period in the ewe does not affect subsequent ovulation rate or corpus luteum function and (2) the delay in the onset of oestrus induced by bovine follicular fluid can be prevented by exogenous FSH.  相似文献   

11.
Blood samples were collected from primiparous sows via indwelling jugular cannulae at 15-min intervals for 12 h before and for 24 h (2 sows) or 48 h (10 sows) after weaning and then every 4 h until behavioural oestrus. Weaning to oestrus intervals ranged from 3 to 10 days and 2 sows showed no signs of oestrus and had not ovulated by Days 11 and 16 after weaning. Prolactin concentrations in plasma decreased significantly (P less than 0.001) and reached basal levels 1-2 h after weaning in all sows whilst plasma progesterone concentrations remained basal until approximately 30 h after the preovulatory LH surge in sows that ovulated. Elevated concentrations of prolactin or progesterone during the post-weaning period were, therefore, not responsible for delayed restoration of cyclicity. Overall, mean LH concentrations rose significantly (P less than 0.001) from 0.22 +/- 0.02 during the 12-h period before weaning to 0.38 +/- 0.03 ng/ml during the 12-h post-weaning period. After weaning, pulsatile and basal LH secretions were markedly increased for sows that showed an early return to oestrus (less than or equal to 4 days) compared with sows showing a longer weaning to oestrus interval but a correlation did not exist between either of these LH characteristics and the time taken to resume cyclicity. Mean LH concentrations before weaning were, however, inversely related (r = -0.649; P less than 0.05) to the weaning to oestrus interval. Overall, mean FSH concentrations rose significantly (P less than 0.001) from 151.1 +/- 6.2 (s.e.m.) ng/ml in the 12-h period immediately before weaning to 187.7 +/- 9.7 ng/ml in the subsequent 12-h period but there was no correlation between FSH concentrations, before or after weaning, and the interval from weaning to oestrus. However, a significant correlation was apparent between ovulation rate and peak concentrations of the rise in FSH after weaning (r = 0.746; P less than 0.05) and overall mean FSH values (r = 0.645; P less than 0.05). It is concluded that both LH and FSH concentrations in peripheral blood rose in response to removal of the suckling stimulus at weanling. The increase in LH pulse frequency associated with weaning was not directly related to the weaning to oestrus interval although a specific pattern of LH secretion was observed in sows showing an early return to oestrus (less than or equal to 4 days).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
A Raid  M Fenske  A K?nig 《Endokrinologie》1979,73(2):157-161
Urinary Lutropin (LH) and Follitropin (FSH) were precipitated with acetone and measured by specific radioimmunoassays. Recovery experiments with special regard to urinary pH values were done by adding 125I-labelled LH and FSH to unprocessed urine. At pH 4.5 68.6% of LH and 66.1% of FSH were recovered. Increasing pH values up to 6.0 resulted in a significant recovery loss of 125-I-LH, but not of 125I-FSH. Immunoreactive FSH concentrations decreased significantly 6 and 48 hours after storage began at room temperature. In healthy males and females we found mean LH and FSH concentrations in 24-h-urine which were similar to those reported by others: LH: males: 22.6 IU/24-h; cycling females: 17.8 IU/24-h; postmenopausal females: 49.1 IU/24-h; FSH: males 6.0 IU/24-h: cycling females: 15.0 IU/24-h; postmenopausal females: 48.5 IU/24-h. Because of their high sensitivity and practicability, we believe that these radioimmunoassays are clinically useful approaches in assessment of pituitary and gonadal disorders in human subjects.  相似文献   

13.
The purpose of these experiments was to determine whether bilateral vasoligation of adult male rats had any short-term effects upon plasma levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin. Adult male rats (250-300 g) were either bilaterally vasoligated or sham vasoligated, and blood samples were obtained by cardiac puncture preoperatively and at 24 h and 7 days following surgery. Plasma levels of both FSH and LH were significantly (P less than 0.01) decreased at 24 h following vasoligation compared to preoperative levels and those of sham-operated controls. However, the response was differential since, at 7 days following vasoligation, plasma FSH was still significantly decreased while LH was returning to control levels. Conversely, plasma prolactin levels were significantly (P less than 0.01) increased at 24 h compared to preoperative values and those in sham-operated controls, and at 7 days prolactin had returned to preoperative control levels. Sham vasoligation did not significantly change plasma levels of FSH, LH, or prolactin at any of the time intervals investigated. These results provide further evidence that suggests that there may be a direct connection between the testis and central nervous system that may be involved in the short-term regulation of gonadotropin and prolactin secretion.  相似文献   

14.
Before castration, the mean plasma concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) did not differ between FF and ++ Booroola rams. After castration, mean LH and FSH concentrations increased after 8 h, and for the next 14 days the rate of increase in FSH, but not LH, secretion was significantly faster in FF than in ++ rams (P less than 0.05). Mean FSH concentrations over this period were significantly higher in FF than in ++ rams (P less than 0.05). In both genotypes, the ranked FSH values did not significantly change their order over time, i.e. a significant within-ram effect was noted (P less than 0.05). Repeated-measures analysis of variance indicated a significant effect of genotype on mean FSH secretion (P less than 0.05) and a significant effect of sire in the FF (P less than 0.05), but not the ++ (P = 0.76), genotype. From Day 28 to Day 58 after castration, FSH and LH concentrations were variable and no overall increases in concentrations were observed. The mean concentrations of both hormones over this period were not related to genotype. There were no gene-specific differences in pulsatile LH secretion 14 weeks after castration. However, the mean LH, but not FSH, response to a bolus injection of 25 micrograms of gonadotrophin-releasing hormone (GnRH) was significantly higher in FF than in ++ rams (P less than 0.05) and this was not significantly affected by sire. These studies support the hypothesis that the F gene is expressed in adult rams, in terms of pituitary responsiveness to an injection of GnRH and to the removal of the testes, but it is not clear from this study whether the influence of sire is related to or independent of the apparent gene-specific differences.  相似文献   

15.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

16.
Southdown ewes in mid-seasonal anoestrus were exposed to rams for 0 h (control group), 2 h, 24 h, 40 h, 3 days, 10 days or 20 days. Serial blood samples were then taken to determine LH and FSH levels. Ewes with greater than 24 h ram exposure were ovariectomized immediately after bleeding, and all follicles greater than 1 mm diameter were dissected from the ovaries and measured. LH basal concentrations and pulse frequency increased significantly within 2 h of ram introduction, but by 24 h fell, and then remained low. FSH concentrations fell within 2 h of ram introduction and remained low. Control group ewes (isolated) had no follicles greater than 4 mm diameter, whereas all ewes exposed to rams had large follicles, with CL or preovulatory follicles present at 40 h after ram introduction. Ram introduction was also associated with follicle recruitment (antrum formation to less than 2 mm). Follicular recruitment and development to the large follicle stage therefore occurred during a period of low plasma gonadotrophin levels and suppressed LH pulsing.  相似文献   

17.
Romney ewes were injected intramuscularly once or twice daily for 3 days with 0, 0.1, 0.5, 1 or 5 ml of bovine follicular fluid (bFF) treated with dextran-coated charcoal, starting immediately after injection of cloprostenol to initiate luteolysis on Day 10 of the oestrous cycle. There was a dose-related suppression of plasma concentrations of FSH, but not LH, during the treatment period. On stopping the bFF treatment, plasma FSH concentrations 'rebounded' to levels up to 3-fold higher than pretreatment values. The mean time to the onset of oestrus was also increased in a dose-related manner by up to 11 days. The mean ovulation rates of ewes receiving 1.0 ml bFF twice daily (1.9 +/- 0.2 ovulations/ewe, mean +/- s.e.m. for N = 34) or 5.0 ml once daily (2.0 +/- 0.2 ovulations/ewe, N = 25) were significantly higher than that of control ewes (1.4 +/- 0.1 ovulations/ewe, N = 35). Comparison of the ovaries of ewes treated with bFF for 24 or 48 h with the ovaries of control ewes revealed no differences in the number or size distribution of antral follicles. However, the large follicles (greater than or equal to 5 mm diam.) of bFF-treated ewes had lower concentrations of oestradiol-17 beta in follicular fluid, contained fewer granulosa cells and the granulosa cells had a reduced capacity to aromatize testosterone to oestradiol-17 beta and produce cyclic AMP when challenged with FSH or LH. No significant effects of bFF treatment were observed in small (1-2.5 mm diam.) or medium (3-4.5 mm diam.) sized follicles. Ewes receiving 5 ml bFF once daily for 27 days, from the onset of luteolysis, were rendered infertile during this treatment period. Oestrus was not observed and ovulation did not occur. Median concentrations of plasma FSH fell to 20% of pretreatment values within 2 days. Thereafter they gradually rose over the next 8 days to reach 60% of pretreatment values where they remained for the rest of the 27-day treatment period. Median concentrations of plasma LH increased during the treatment period to levels up to 6-fold higher than pretreatment values. When bFF treatment was stopped, plasma concentrations of FSH and LH quickly returned to control levels, and oestrus was observed within 2 weeks. The ewes were mated at this first oestrus and each subsequently delivered a single lamb.  相似文献   

18.
In male rats, LH pulse frequency and amplitude increase dramatically by 24 h after gonadectomy; in females they increase only slightly by this time. Mean FSH levels increase significantly in both sexes by 24 h after gonadectomy. The objectives of the present studies were to compare pulsatile LH, FSH, and prolactin (PRL) secretion in intact versus gonadectomized and in male versus female rats, and to determine whether the acute postovariectomy lag in LH rise is due to a lingering effect of the higher PRL and/or progesterone (P) levels seen in intact females. LH pulse amplitude, frequency, and mean levels increased significantly by 24 h after gonadectomy in both sexes, but the increases were greater in the males. FSH mean levels, but not pulse amplitude or frequency, increased similarly in both sexes by 24 h after gonadectomy. PRL did not change with gonadectomy. Treatment with CB-154 (a dopamine agonist), with or without RU486 (a P antagonist), 1 h before gonadectomy significantly suppressed pulsatile PRL secretion 1 day later in both sexes. There was no effect of either treatment on LH secretion. We have demonstrated that there is a sex difference in LH, but not FSH or PRL, pulsatility at 24 h after gonadectomy, and that female rats' higher PRL and P levels do not account for their slow rate of LH rise after ovariectomy.  相似文献   

19.
正季节性繁殖是动物适应环境的具体表现,也是动物维持其种群发展的重要策略。生殖激素和动物的繁殖活动关系密切,协调实现繁殖后代的机能(赖平等,2012),如配子的发生、成熟与排出及受精、妊娠、分娩与泌乳等性行为活动。例如雄性甘肃鼢鼠(Myospalax cansus)血清中睾酮(程志兴,2009)和黄山短尾猴(Macaca thibetana)血清中孕酮含量(夏东坡,2007)在交配期间显著升高,  相似文献   

20.
The effects of different doses of testosterone (T), the aromatase inhibitors 1,4,6-androstatriene-3,17-dione (ATD) and 4-hydroxy-4-androstene-3,17-dione (4OH), and the combined treatment of T and ATD on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) at the onset of puberty in juvenile Atlantic salmon males were investigated. T always increased pituitary LH. Also, ATD increased pituitary LH, though to a lesser extent than T. However, ATD combined with T diminished pituitary LH levels compared to T alone, indicating an aromatase-dependent positive feedback of T on LH in immature males. 4OH, which was less effective than ATD as an aromatase inhibitor, increased LH content. ATD treatment resulted in increased pituitary FSH levels, similar to those of mature controls. Positive effects of ATD on plasma FSH were found, indicating the presence of an aromatase-dependent negative feedback. The 4OH effects on FSH levels were inconsistent. T exerted both positive and negative effects on pituitary FSH and testes growth, depending on dose and season, with the positive effects being more pronounced with the low doses and the negative effects with the high doses. The treatment of T combined with ATD did not affect the positive effect of T alone on pituitary and plasma FSH, indicating the presence of an aromatase-independent positive feedback on FSH. There was a positive correlation between FSH and gonadosomatic index, especially during summer when gonadal development occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号