首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF) plays a central role in vasoproliferative diseases in the retina, however, other gene products modulate its effects. The angiopoietins are particularly important in this regard. Angiopoietin 2 (Ang2) collaborates with VEGF to stimulate neovascularization (NV) in some situations, but in other situations causes regression of NV. Ang2 also causes a transient increase in vascular density during retinal vascular development. In this study, we sought to determine if Ang1 has similar activities. The effects of Ang1 were tested in double transgenic mice with inducible expression of Ang1. Increased expression of Ang1 in the retina during retinal vascular development did not cause a detectable alteration in vascular density. Also, unlike Ang2, increased expression of Ang1 had no effect on established retinal or choroidal NV. However, when Ang1 expression was initiated simultaneously with that of VEGF, it strongly suppressed VEGF-induced NV and prevented retinal detachment. These data indicate that the timing of Ang1 expression is a critical determinate of its effects on VEGF-induced NV in the retina; it effectively blocks the initiation and progression of NV, but cannot reverse established NV or reduce leakage from NV. These data suggest that increased expression of Ang1 may be a good strategy for prophylaxis of retinal NV, but is unlikely to be effective as monotherapy of established NV.  相似文献   

2.
Retinal neovascularization (NV) occurs in various ocular disorders including proliferative diabetic retinopathy, retinopathy of prematurity and secondary neovascular glaucoma, which often result in blindness. Vascular endothelial growth factor (VEGF) is an essential growth factor for angiogenesis, and is particularly regulated by hypoxia inducible factor-1alpha (HIF-1alpha) under hypoxic conditions. Therefore, HIF-1alpha and VEGF could provide targets for therapeutic intervention on retinal NV. In this study, we investigated the inhibitory effects of small interfering RNA (siRNA) targeting HIF-1alpha and VEGF on the expression of HIF-1alpha and VEGF in human umbilical vein endothelial cells (HUVEC) in vitro and on retinal NV in vivo. siRNA-expressing plasmids targeting human HIF-1alpha (HIF-1alpha siRNA) and human VEGF(165) (VEGF siRNA) were constructed. They were transfected and co-transfected to HUVEC and C57BL/6J mice of ischemic retinopathy model. HIF-1alpha siRNA and VEGF siRNA specifically downregulated HIF-1alpha and VEGF at both mRNA and protein levels in vitro and in vivo. Neovascular tufts and neovascular nuclei were decreased in gene therapy group compared to control hypoxia group. Co-transfection of HIF-1alpha siRNA and VEGF siRNA resulted in maximal effects on VEGF suppression in vitro and in vivo. It also manifested the maximal inhibitory effect on retinal NV. These results indicate that the application of HIF-1alpha siRNA and VEGF siRNA technology holds great potential as a novel therapeutic for retinal NV.  相似文献   

3.
Retinal neovascularization (NV) and macular edema, resulting from blood-retinal barrier (BRB) breakdown, are major causes of visual loss in ischemic retinopathies. Choroidal NV (CNV) occurs in diseases of the retinal pigmented epithelium/Bruch's membrane complex and is another extremely prevalent cause of visual loss. We used mice in which the hypoxia response element (HRE) is deleted from the vascular endothelial growth factor (vegf) promoter (Vegf(delta/delta) mice) to explore the role of induction of VEGF through the HRE in these disease processes. Compared to wild type (Vegf+/+) mice with oxygen-induced ischemic retinopathy (OIR) in which vegf mRNA levels were increased and prominent retinal NV and BRB breakdown occurred, Vegf(delta/delta) littermates with OIR failed to increase vegf mRNA levels in the retina and had significantly less retinal NV and BRB breakdown, but showed prominent dilation of some superficial retinal vessels. Vegf(+/delta) littermates with ischemic retinopathy developed comparable retinal NV to Vegf+/+ mice, exhibited intermediate levels of BRB breakdown, and did not show vasodilation. In a mouse model of CNV, due to laser-induced rupture of Bruch's membrane, the area of CNV at Bruch's membrane rupture sites was more than tenfold greater in Vegf+/+ mice than in Vegf(delta/delta) littermates. In contrast to these dramatic differences in pathologic ocular NV, Vegf(delta/delta) mice showed subtle differences in retinal vascular development compared to Vegf+/+ mice; it was slightly delayed, but otherwise normal. These data suggest that induction of VEGF through the HRE in its promoter is critical for retinal and CNV, but not for retinal vascular development.  相似文献   

4.
Several ocular diseases complicated by neovascularization are being treated by repeated intraocular injections of vascular endothelial growth factor (VEGF) antagonists. While substantial benefits have been documented, there is concern that unrecognized damage may be occurring, because blockade of VEGF may damage the fenestrated vessels of the choroicapillaris and deprive retinal neurons of input from a survival factor. One report has suggested that even temporary blockade of all isoforms of VEGF-A results in significant loss of retinal ganglion cells. In this study, we utilized double transgenic mice with doxycycline-inducible expression of soluble VEGF receptor 1 coupled to an Fc fragment (sVEGFR1Fc), a potent antagonist of several VEGF family members, including VEGF-A, to test the effects of VEGF blockade in the retina. Expression of sVEGFR1Fc completely blocked VEGF-induced retinal vascular permeability and significantly suppressed the development of choroidal neovascularization at rupture sites in Bruch's membrane, but did not cause regression of established choroidal neovascularization. Mice with constant expression of sVEGFR1Fc in the retina for 7 months had normal electroretinograms and normal retinal and choroidal ultrastructure including normal fenestrations in the choroicapillaris. They also showed no significant difference from control mice in the number of ganglion cell axons in optic nerve cross sections and the retinal level of mRNA for 3 ganglion cell-specific genes. These data indicate that constant blockade of VEGF for up to 7 months has no identifiable deleterious effects on the retina or choroid and support the use of VEGF antagonists in the treatment of retinal diseases.  相似文献   

5.
Development of the retinal vascular network is strictly confined within the neuronal retina, allowing the intraocular media to be optically transparent. However, in retinal ischemia, pro-angiogenic factors (including vascular endothelial growth factor-A, VEGF-A) induce aberrant guidance of retinal vessels into the vitreous. Here, we show that the soluble heparan sulfate level in murine intraocular fluid is high particularly during ocular development. When the eyes of young mice with retinal ischemia were treated with heparan sulfate-degrading enzyme, the subsequent aberrant angiogenesis was greatly enhanced compared to PBS-injected contralateral eyes; however, increased angiogenesis was completely antagonized by simultaneous injection of heparin. Intraocular injection of heparan sulfate or heparin alone in these eyes resulted in reduced neovascularization. In cell cultures, the porcine ocular fluid suppressed the dose-dependent proliferation of human umbilical vein endothelial cells (HUVECs) mediated by VEGF-A. Ocular fluid and heparin also inhibited the migration and tube formation by these cells. The binding of VEGF-A and HUVECs was reduced under a high concentration of heparin or ocular fluid compared to lower concentrations of heparin. In vitro assays demonstrated that the ocular fluid or soluble heparan sulfate or heparin inhibited the binding of VEGF-A and immobilized heparin or VEGF receptor 2 but not VEGF receptor 1. The recognition that the high concentration of soluble heparan sulfate in the ocular fluid allows it to serve as an endogenous inhibitor of aberrant retinal vascular growth provides a platform for modulating heparan sulfate/heparin levels to regulate angiogenesis.  相似文献   

6.
The interruption of vascular development could cause structural and functional abnormalities in tissues. We have previously reported that short‐term treatment of newborn mice with vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitors induces abnormal retinal vascular growth and patterns. An exposure of neonatal mice to high‐concentration oxygen disturbs normal retinal vascular development. The present study aimed to determine (1) whether vascular abnormalities are observed in the retina of newborn mice exposed to high concentrations of oxygen, and (2) how astrocyte network formation is affected following the exposure to hyperoxia. Newborn (postnatal day 0) mice were exposed to 75% oxygen for 48 or 96 hr. During hyperoxia exposure, VEGF expression decreased, and the onset of retinal vascularization was completely suppressed. After completion of the hyperoxic period, retinal vascularization occurred, but it was delayed in a hyperoxic exposure duration‐dependent manner. In retinas of hyperoxia‐exposed mice, dense capillary plexuses were found, and the number of arteries and veins decreased. The astrocyte network formation was slightly delayed under hyperoxic conditions, and the network became denser in retinas of mice with an episode of hyperoxia. Expression of VEGF levels in the avascular retina of mice that were exposed to hyperoxia was higher than that of control mice. These results suggest that short‐term interruption of the onset of vascular development resulting from the reduction in VEGF signals induces abnormal vascular patterns in the mouse retina. The abnormalities in retinal astrocyte behavior might contribute to the formation of an abnormal retinal vascular growth.  相似文献   

7.
Retinal Müller cells are major producers of inflammatory and angiogenic cytokines which contribute to diabetic retinopathy (DR). Over-activation of the Wnt/β-catenin pathway has been shown to play an important pathogenic role in DR. However, the roles of Müller cell-derived Wnt/β-catenin signaling in retinal neovascularization (NV) and DR remain undefined. In the present study, mice with conditional β-catenin knockout (KO) in Müller cells were generated and subjected to oxygen-induced retinopathy (OIR) and streptozotocin (STZ)-induced diabetes. Wnt signaling was evaluated by measuring levels of β-catenin and expression of its target genes using immunoblotting. Retinal vascular permeability was measured using Evans blue as a tracer. Retinal NV was visualized by angiography and quantified by counting pre-retinal nuclei. Retinal pericyte loss was evaluated using retinal trypsin digestion. Electroretinography was performed to examine visual function. No abnormalities were detected in the β-catenin KO mice under normal conditions. In OIR, retinal levels of β-catenin and VEGF were significantly lower in the β-catenin KO mice than in littermate controls. The KO mice also had decreased retinal NV and vascular leakage in the OIR model. In the STZ-induced diabetic model, disruption of β-catenin in Müller cells attenuated over-expression of inflammatory cytokines and ameliorated pericyte dropout in the retina. These findings suggest that Wnt signaling activation in Müller cells contributes to retinal NV, vascular leakage and inflammation and represents a potential therapeutic target for DR.  相似文献   

8.
9.
Kim JH  Park SW  Yu YS  Kim KW  Kim JH 《Biochimie》2012,94(3):734-740
In ocular development, retinal physiological hypoxia in response to the retinal metabolic activity controls retinal vascular development, which is regulated by variable angiogenic factors. Herein, we demonstrated that hypoxia-induced IGF-II could contribute to retinal vascularization in ocular development. In the developing retina, IGF-II expression appears to be predominant on retinal vessels, which was chronologically increased and peaked during active retinal angiogenesis similar to VEGF expression. Under hypoxic condition, IGF-II as well as VEGF was significantly up-regulated in retinal vascular endothelial cells. In addition, IGF-II treatment could also increase VEGF expression in retinal vascular endothelial cells. The VEGF expression induced by IGF-II was mediated by ERK-1/2 activation. Moreover, IGF-II strongly promoted angiogenic processes of migration and tube formation of retinal microvascular endothelial cells. In conclusion, our results provided that hypoxia-induced IGF-II may regulate retinal vascular development not only directly by IGF-II-mediated angiogenic activity, but also indirectly by IGF-II-induced VEGF expression. Therefore, the potential contribution of IGF-II to pathological retinal angiogenesis should be furthermore explored for the development of novel treatments to vaso-proliferative retinopathies.  相似文献   

10.
It has recently been reported that relatively short‐term inhibition of vascular endothelial growth factor (VEGF) signaling can cause photoreceptor cell death, a potentially clinically important finding since VEGF blockade has become an important modality of treatment of ocular neovascularization and macular edema. However, in a set of studies in which we achieved extended and complete blockage of VEGF‐induced vascular leakage through retinal expression of a VEGF binding protein, we did not observe any toxicity to retinal neurons. To follow‐up on these apparently discrepant findings, we designed a set of experiments with the kinase inhibitor SU4312, which blocks phosphorylation of VEGF receptors, to look directly for evidence of VEGF inhibition‐related retinal toxicity. Using transgenic mice with sustained expression of VEGF in photoreceptors, we determined that periocular injection of 3 µg of SU4312 every 5 days markedly suppressed subretinal neovascularization, indicating effective blockade of VEGF signaling. Wild‐type mice given periocular injections of 5 µg of SU4312 every 5 days for up to 12 weeks showed normal scotopic and photopic electroretinograms (ERGs), no TUNEL stained cells in the retina, and no reduction in outer nuclear layer thickness. Incubation of cultured ganglion cells or retinal cultures containing photoreceptors with high doses of SU4312 did not reduce cell viability. These data suggest that blocking VEGF signaling in the retina for up to 12 weeks does not damage photoreceptors nor alter ERG function and should reassure patients who are receiving frequent injections of VEGF antagonists for choroidal and retinal vascular diseases. J. Cell. Physiol. 224:262–272, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

11.
IL-1beta is a pro-inflammatory agent associated with angiogenesis and increased vascular permeability. To determine whether IL-1beta elicits these responses through an upregulation of VEGF, transgenic mice that overexpress IL-1beta in the lens were evaluated at various time points for the localization of VEGF, the location and extent of blood-retinal barrier (BRB) breakdown, and the origin and extent of neovascularization (NV). In homozygous and heterozygous transgenic mice, but not controls, intense VEGF immunoreactivity was scattered throughout the retina at postnatal days 5-7 (P5-7), just after the onset of inflammatory cell infiltration. VEGF staining in the retina remained widespread, but weak from P9-15. Beginning at P15, the intensity of VEGF immunoreactivity achieved a second peak, which it maintained through adulthood. This peak coincided with significant retinal destruction due to massive inflammation. The onset of BRB breakdown coincided with the upregulation of VEGF (P5-7) and widespread BRB breakdown was demonstrated from about P9. From P9-12, aggregates of cells positive for Griffonia simplicifolia isolectin-B4, a marker for vascular endothelial cells, formed on the retinal surface. These cells migrated into the retina at P12-15 with the more superficial cells forming a network of vessels and the deeper cells remaining in small clusters, thus demonstrating that NV occurs much later than BRB breakdown. Non-transgenic FVB/N mice, which undergo retinal degeneration beginning at about P9, also demonstrate the latter peak of VEGF upregulation and the accompanying BRB breakdown, but not the early upregulation. VEGF immunostaining of transgenic and non-transgenic mouse retinas was eliminated by pre-incubation of the VEGF antibodies with VEGF peptide. The data suggest that the early peak of VEGF upregulation (P5-7) and its accompanying BRB breakdown is due to IL-1beta expression and is likely to be dependent on inflammatory cell infiltration. The latter peak appears to be related to retinal destruction.  相似文献   

12.
TM601 is a synthetic polypeptide with sequence derived from the venom of the scorpion Leiurus quinquestriatus that has anti‐neoplastic activity. It has recently been demonstrated to bind annexin A2 on cultured tumor and vascular endothelial cells and to suppress blood vessel growth on chick chorioallantoic membrane. In this study, we investigated the effects of TM601 in models of ocular neovascularization (NV). When administered by intraocular injection, intravenous injections, or periocular injections, TM601 significantly suppressed the development of choroidal NV at rupture sites in Bruch's membrane. Treatment of established choroidal NV with TM601 caused apoptosis of endothelial cells and regression of the NV. TM601 suppressed ischemia‐induced and vascular endothelial growth factor‐induced retinal NV and reduced excess vascular permeability induced by vascular endothelial growth factor. Immunostaining with an antibody directed against TM601 showed that after intraocular or periocular injection, TM601 selectively bound to choroidal or retinal NV and co‐localized with annexin A2, which is undetectable in normal retinal and choroidal vessels, but is upregulated in endothelial cells participating in choroidal or retinal NV. Intraocular injection of plasminogen or tissue plasminogen activator, which like TM601 bind to annexin A2, also suppressed retinal NV. This study supports the hypothesis that annexin A2 is an important target for treatment of neovascular diseases and suggests that TM601, through its interaction with annexin A2, causes suppression and regression of ocular NV and reduces vascular leakage and thus may provide a new treatment for blinding diseases such as neovascular age‐related macular degeneration and diabetic retinopathy. J. Cell. Physiol. 225: 855–864, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Elevated TGFbeta signaling inhibits ocular vascular development   总被引:3,自引:0,他引:3  
Alterations in the ocular vasculature are associated with retinal diseases such as retinopathy of prematurity and diabetic retinopathy. Vascular endothelial growth factor (VEGF) as a potent stimulator for normal and abnormal vascular growth has been extensively studied. However, little is known about secreted factors that negatively regulate vascular growth in ocular tissues. We now report that expression of a self-activating TGFbeta1 in the ocular lens of transgenic mice results in inhibition of retinal angiogenesis followed by retinal degeneration. Transgenic TGFbeta1 can rescue the hyperplasic hyaloid tissue and reverse the corneal deficiency in TGFbeta2-null embryos. These results demonstrate that TGFbeta signaling modulates development of ocular vasculature and cornea in a dosage-dependent manner and that TGFbeta1 can substitute for TGFbeta2 in ocular tissues.  相似文献   

14.
The receptor tyrosine kinase Flk1 is known to mediate signals of vascular endothelial growth factor (VEGF) during vasculogenesis and hematopoiesis. We demonstrate by in situ hybridization that in addition to endothelial cells, chick Flk1 mRNA is also expressed in the notochord and in the neural epithelial cells of the ventral diencephalon, hindbrain, and spinal cord. During the development of the avascular chick retina, Flk1 mRNA is detected in the proliferative zone of the neural epithelium, whereas the VEGF ligand is expressed by differentiated retinal ganglion cells. Moreover, expression patterns of Flk1 in the retina are conserved among chick, quail and mouse, thus suggesting a distinct role of Flk1 and VEGF in the development of the vertebrate central nervous system.  相似文献   

15.
Semaphorins not only function in axon guidance during development but also contribute to various other biological processes. We have now examined the expression of semaphorin 3A (Sema3A) and its receptor components neuropilin 1 (Npn1) and plexin A (PlxA) during development of the mouse retina. Immunohistofluorescence analysis revealed that the expression patterns of Sema3A and Npn1 were similar during embryonic and postnatal development. The expression pattern of PlxA was also similar to those of Sema3A and Npn1 during embryonic and early postnatal (before eye opening) developments. However, the pattern of PlxA expression changed markedly after eye opening, with the expression disappearing from the optic nerve and increasing in intensity in the retinal pigment epithelium. Immunoprecipitation analysis showed that Sema3A interacted with PlxA in the retinal pigment epithelial cell line ARPE19 but not in the retinal ganglion cell line RGC5, whereas the opposite pattern of association was apparent for Sema3A and Npn1. Given that atmospheric oxygen is thought to play a role in the differentiation and maintenance of various ocular cell types, our results suggest that Sema3A-PlxA signalling activated by an effect of ambient oxygen on PlxA expression may contribute to differentiation of the retinal pigment epithelium. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This study was to investigate the effect of the absence of ganglion cells on the development of human retinal vasculature. Anencephaly (AnC) and age-matched control eyes derived from each three spontaneously aborted fetus (ranging from 15 to 20 weeks gestation) were subjected to immunofluorescence staining for HIF-1α, Thy-1, glial fibrillary acidic protein (GFAP) and platelet/endothelial cell adhesion molecule (PECAM) and apoptosis assay. In developing mouse retina, Western blotting for hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) was performed. Under hypoxic condition (O2 < 1%), cellular proliferation and VEGF mRNA expression in astrocytes were measured. Apoptotic cells in AnC retina were primarily localized in the ganglion cell layer (GCL), whereas apoptotic cells in normal retina were distributed in the retinoblastic layer. With increase of apoptotic cells in GCL of AnC retina, HIF-1α expression were severely distinguished in avascular retina and GFAP expression in junctional area between avascular and vascular retina was much reduced, accompanied by decrease of PECAM expression compared to normal retina. In developing mouse retina, HIF-1α and VEGF expression were high in hypoxic retina of early stage with incomplete vascular development and then progressively decreased with regression to arborous pattern of matured vascular networks. In hypoxic condition, a significant increase in cellular proliferation and VEGF mRNA expression was observed in astrocytes. Therefore, our results suggest that vascular attenuation in AnC retina could be closely related to the absence of ganglion cells as the metabolic demander to induce retinal vascular development.  相似文献   

17.
BACKGROUND: New vessel growth is often associated with ischemia, and hypoxic tissue has been identified as a potential source of angiogenic factors. In particular, ischemia is associated with the development of neovascularization in a number of ocular pathologies. For this reason, we have studied the induction of endothelial cell mitogens by hypoxia in retinal cells. MATERIALS AND METHODS: Human retinal pigment epithelium (hRPE) were grown under normoxic and hypoxic conditions and examined for the production of endothelial mitogens. Northern analysis, biosynthetic labeling and immunoprecipitation, and ELISA were used to assess the levels of vascular endothelial growth factor/vascular permeability factor (VEGF) and basic fibroblast growth factor (bFGF), two endothelial cell mitogens and potent angiogenic factors. Soluble receptors for VEGF were employed as competitive inhibitors to determine the contribution of the growth factor to the hypoxia-stimulated mitogen production. RESULTS: Following 6-24 hr of hypoxia, confluent and growing cultures of hRPE increase their levels of VEGF mRNA and protein synthesis. Biosynthetic labeling studies and RT-PCR analysis indicate that the cells secrete VEGF121 and VEGF165, the soluble forms of the angiogenic factor. In contrast, hRPE cultured under hypoxic conditions show reduced steady-state levels of basic fibroblast growth factor (bFGF) mRNA and decreased bFGF protein synthesis. Unlike VEGF, bFGF is not found in conditioned media of hRPE following 24 hr of hypoxia. Using a soluble high-affinity VEGF receptor as a competitive inhibitor of VEGF, we demonstrate that a VEGF-like activity is the sole hypoxia-inducible endothelial mitogen produced by cultured hRPE. CONCLUSIONS: From this comparison we conclude that hRPE do not respond to hypoxia with a general, nonspecific increase in the overall levels of growth factors, as is seen during cell wounding responses or serum stimulation. The physiological relevance of data from this in vitro model are affirmed by separate studies in an animal model of retinal ischemia-induced ocular neovascularization (1) in which retina-derived VEGF levels have been shown to correlate spatio-temporally with the onset of angiogenesis. Taken together, these data support the hypothesis that the induction of VEGF by hypoxia mediates the rapid, initial angiogenic response to retinal ischemia.  相似文献   

18.
Vascularization is essential for tissue development and in restoration of tissue integrity after an ischemic injury. In studies of vascularization, the focus has largely been placed on vascular endothelial growth factor (VEGF), yet other factors may also orchestrate this process. Here we show that succinate accumulates in the hypoxic retina of rodents and, via its cognate receptor G protein-coupled receptor-91 (GPR91), is a potent mediator of vessel growth in the settings of both normal retinal development and proliferative ischemic retinopathy. The effects of GPR91 are mediated by retinal ganglion neurons (RGCs), which, in response to increased succinate levels, regulate the production of numerous angiogenic factors including VEGF. Accordingly, succinate did not have proangiogenic effects in RGC-deficient rats. Our observations show a pathway of metabolite signaling where succinate, acting through GPR91, governs retinal angiogenesis and show the propensity of RGCs to act as sensors of ischemic stress. These findings provide a new therapeutic target for modulating revascularization.  相似文献   

19.
Retinae of aged humans show signs of vascular regression. Vascular regression involves a mismatch between Angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF) expression. We used heterozygous Ang-2 deficient (Ang2LacZ) mice to evaluate murine retinal vascular changes and gene expression of growth factors. Vascular changes were assessed by quantitative retinal morphometry and gene expression levels of growth factors were measured by quantitative PCR. The numbers of endothelial cells and pericytes did not change in the Ang2LacZ retinae with age, whereas they decreased throughout the age spectrum studied in the wild type retinae. Moreover, vascular regression significantly decelerated in the heterozygous Ang2LacZ retinae (200% to 1 month), while the formation of acellular capillaries was significantly increased at 13 months in the wild type retinae (340% to 1 month). Gene expression analysis revealed that VEGF, Ang-1, PDGF-B and Ang2 mRNA levels were decreased in the wild type retinae at 9 month of age. However, the decrease of Ang-2 was smaller compared with other genes. While VEGF levels dropped in wild type mice up to 60% compared to 1 month, VEGF increased in heterozygous Ang-2 deficient retinae at an age of 9 months (141% to 1 month). Similarly, Ang-1 levels decreased in wild type mice (45% to 1 month), but remained stable in Ang2LacZ mice. These data suggest that Ang-2 gene dose reduction decelerates vasoregression in the retina with age. This effect links to higher levels of survival factors such as VEGF and Ang-1, suggesting that the ratio of these factors is critical for capillary cell survival.  相似文献   

20.
Open angle glaucoma is defined as a progressive and time-dependent death of retinal ganglion cells concomitant with high intraocular pressure, leading to loss of visual field. Because neurotrophins are a family of growth factors that support neuronal survival, we hypothesized that quantitative and qualitative changes in neurotrophins or their receptors may take place early in ocular hypertension, preceding extensive cell death and clinical features of glaucoma. We present molecular, biochemical, and phenotypic evidence that significant neurotrophic changes occur in retina, which correlate temporally with retinal ganglion cell death. After 7 days of ocular hypertension there is a transient up-regulation of retinal NGF, while its receptor TrkA is up-regulated in a sustained fashion in retinal neurons. After 28 days of ocular hypertension there is sustained up-regulation of retinal BDNF, but its receptor TrkB remains unchanged. Throughout, NT-3 levels remain unchanged but there is an early and sustained increase of its receptor TrkC in Müller cells but not in retinal ganglion cells. These newly synthesized glial TrkC receptors are truncated, kinase-dead isoforms. Expression of retinal p75 also increases late at day 28. Asymmetric up-regulation of neurotrophins and neurotrophin receptors may preclude efficient neurotrophic rescue of RGCs from apoptosis. A possible rationale for therapeutic intervention with Trk receptor agonists and p75 receptor antagonists is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号