首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
We have identified seven ERK-related proteins ("ERPs"), including ERK2, that are stably associated in vivo with AP-1 dimers composed of diverse Jun and Fos family proteins. These complexes have kinase activity. We designate them as "class I ERPs." We originally hypothesized that these ERPs associate with DNA along with AP-1 proteins. We devised a DNA affinity chromatography-based analytical assay for DNA binding, the "nucleotide affinity preincubation specificity test recognition" (NAPSTER) assay. In this assay, class I ERPs do not associate with AP-1 DNA. However, several new "class II" ERPs do associate with DNA. p41 and p44 are ERK1/2-related ERPs that lack kinase activity and associate along with AP-1 proteins with AP-1 DNA. Class I ERPs and their associated kinase activity thus appear to bind AP-1 dimers when they are not bound to DNA and then disengage and are replaced by class II ERPs to form higher order complexes when AP-1 dimers bind DNA. p97 is a class III ERP, related to ERK3, that associates with AP-1 DNA without AP-1 proteins. With the exception of ERK2, none of the 10 ERPs appear to be known mitogen-activated protein kinase superfamily members.  相似文献   

11.
12.
The stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1 has been determined. 3H-Labeled TF1 was allowed to bind to a 32P-labeled DNA fragment containing a TF1 binding site. Multiple TF1-DNA complexes were resolved from each other and from unbound DNA by native gel electrophoresis. DNA-protein complexes were cut from polyacrylamide gels, and the amounts of 3H and 32P contained in each slice were measured. A ratio of 1.12 +/- 0.06 TF1 dimer/DNA molecule was calculated for the fastest-migrating TF1-DNA complex. We conclude that TF1 has a DNA-binding unit of one dimer. More slowly migrating complexes are apparently formed by serial addition of single TF1 dimers.  相似文献   

13.
14.
15.
16.
17.
Although many functions of human alveolar macrophages are altered compared with their precursor cell, the blood monocyte (monocyte), the reason(s) for these functional changes have not been determined. We recently reported that human alveolar macrophages do not express AP-1 DNA binding activity (Monick, M. M., Carter, A. B., Gudmundsson, G., Geist, L. J., and Hunninghake, G. W. (1998) Am. J. Physiol. 275, L389-L397). To determine why alveolar macrophages do not express AP-1 DNA binding activity, we first showed that there was not a decrease in expression of the FOS and JUN proteins that make up the AP-1 complex. There was, however, a significant difference in the amounts of the nuclear protein, REF-1 (which regulates AP-1 DNA binding by altering the redox status of FOS and JUN proteins), in alveolar macrophages compared with monocytes. In addition, in vitro differentiation of monocytes to a macrophage-like cell resulted in decreased amounts of REF-1. Finally, addition of REF-1 from activated monocytes to alveolar macrophage nuclear proteins resulted in a marked increase in AP-1 DNA binding. These studies strongly suggest that the process of differentiation of monocytes into alveolar macrophages is associated with a loss of REF-1 and AP-1 activity. This observation may explain, in part, some of the functional differences observed for alveolar macrophages compared with monocytes.  相似文献   

18.
Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements   总被引:359,自引:0,他引:359  
W Lee  P Mitchell  R Tjian 《Cell》1987,49(6):741-752
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号