首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although many functions of human alveolar macrophages are altered compared with their precursor cell, the blood monocyte (monocyte), the reason(s) for these functional changes have not been determined. We recently reported that human alveolar macrophages do not express AP-1 DNA binding activity (Monick, M. M., Carter, A. B., Gudmundsson, G., Geist, L. J., and Hunninghake, G. W. (1998) Am. J. Physiol. 275, L389-L397). To determine why alveolar macrophages do not express AP-1 DNA binding activity, we first showed that there was not a decrease in expression of the FOS and JUN proteins that make up the AP-1 complex. There was, however, a significant difference in the amounts of the nuclear protein, REF-1 (which regulates AP-1 DNA binding by altering the redox status of FOS and JUN proteins), in alveolar macrophages compared with monocytes. In addition, in vitro differentiation of monocytes to a macrophage-like cell resulted in decreased amounts of REF-1. Finally, addition of REF-1 from activated monocytes to alveolar macrophage nuclear proteins resulted in a marked increase in AP-1 DNA binding. These studies strongly suggest that the process of differentiation of monocytes into alveolar macrophages is associated with a loss of REF-1 and AP-1 activity. This observation may explain, in part, some of the functional differences observed for alveolar macrophages compared with monocytes.  相似文献   

2.
3.
The DNA fragmentation factor 45 (DFF45) is a subunit of a heterodimeric DNase complex critical for the induction of DNA fragmentation in vitro. To understand the in vivo role of DFF45 in programmed cell death, we measured the expression of DFF45 during mouse development and compared DNA fragmentation and viability of DFF45-deficient cells with wild-type control cells after activation of apoptosis. We found that DFF45 is ubiquitously expressed throughout mouse development. Moreover, DFF45-deficient thymocytes are resistant to DNA fragmentation with in vivo dexamethasone treatment. Furthermore, primary thymocytes from DFF45 mutant mice are also more resistant to apoptosis than wild-type control cells on exposure to several apoptotic stimuli. Dying DFF45-deficient thymocytes exhibit different morphology than wild-type control cells in that they show reduced degree of chromatin condensation, absent nuclear fragmentation, intranuclear cytoplasmic invagination, and striking nuclear chromatin conglutination after release from disintegrating cells. These results indicate that DFF45 is essential during normal apoptosis.  相似文献   

4.
Plant response to stress includes changes in gene expression and chromatin structure. Our previous work showed that Arabidopsis thaliana Dicer-like (DCL) mutants were impaired in transgenerational response to stress that included an increase in recombination frequency, cytosine methylation and stress tolerance. It can be hypothesized that changes in chromatin structure are important for an efficient stress response. To test this hypothesis, we analyzed the stress response of ddm1, a mutant impaired in DDM1, a member of the SWI/SNF family of adenosine triphosphate-dependent chromatin remodeling genes. We exposed Arabidopsis thaliana ddm1 mutants to methyl methane sulfonate (MMS) and NaCl and found that these plants were more sensitive. At the same time, ddm1 plants were similar to wild-type plants in sensitivity to temperature and bleomycin stresses. Direct comparison to met1 plants, deficient in maintenance methyltransferase MET1, showed higher sensitivity of ddm1 plants to NaCl. The level of DNA strand breaks upon exposure to MMS increased in wild-type plants but decreased in ddm1 plants. DNA methylation analysis showed that heterozygous ddm1/DDM1 plants had lower methylation as compared to fourth generation of homozygous ddm1/ddm1 plants. Exposure to MMS resulted in a decrease in methylation in wild-type plants and an increase in ddm1 plants. Finally, in vitro DNA excision repair assay showed lower capacity for ddm1 mutant. Our results provided a new example of a link between genetic genome stability and epigenetic genome stability. Key message We demonstrate that heterozygous ddm1/DDM1 plants are more sensitive to stress and have more severe changes in methylation than homozygous ddm1/ddm1 plants.  相似文献   

5.
6.
Interleukin-8 (IL-8) mRNA was constitutively expressed in human hepatoma cell line, HepG2 and in human hepatocellular carcinoma (HCC), which often form hypervascular tumors. The sequence 5'-AGGAAG-3' at -137 to -132 bp of IL-8 promoter was shown to be polyomavirus enhancer A binding protein-3 (PEA3) binding site, which can cooperate with activator protein-1 (AP-1). Both PEA3 and AP-1 are essential for constitutive IL-8 expression in HepG2 cells, determined by promoter assays. Moreover, PEA3 and IL-8 proteins coexisted in HCC tissues, but not in uninvolved liver tissues. It is possible PEA3 may have important roles in tumor progression and in angiogenesis in HCC.  相似文献   

7.
Heme oxygenase-1 is a highly inducible gene, the product of which catalyzes breakdown of the prooxidant heme. The purpose of this study was to investigate the regulation of the human heme oxygenase-1 gene in renal epithelial cells. DNase I hyper-sensitivity studies identified three distal sites (HS-2, -3, and -4) corresponding to approximately -4.0, -7.2, and -9.2 kb, respectively, of the heme oxygenase-1 promoter in addition to one proximal region, HS-1, which we have shown previously to be an E box. In vivo dimethyl sulfate footprinting of the HS-2 region revealed six individual protected guanines. Two mutations within HS-2 combined with a third mutation of the proximal E box abolished hemin- and cadmium-driven heme oxygenase-1 promoter activation, suggesting that these three sites synergized for maximal heme oxygenase-1 induction. Jun proteins bound to the antioxidant response element in the HS-2 region in vitro and associated with the heme oxygenase-1 promoter in vivo. JunB and JunD contribute opposing effects; JunB activated whereas JunD repressed heme oxygenase-1 expression in human renal epithelial cells, results that were corroborated in junB(-)(/)(-) and junD(-)(/)(-) cells. We propose that heme oxygenase-1 induction is controlled by a dynamic interplay of regulatory proteins, and we provide new insights into the molecular control of the human heme oxygenase-1 gene.  相似文献   

8.
9.
10.
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.  相似文献   

11.
Summary Mutations affecting single-strand DNA binding protein (SSB) impair induction of mutagenic (SOS) repair. To further investigate the role of SSB in SOS induction and DNA repair, isogenic strains were constructed combining the ssb +, ssb-1 or ssb-113 alleles with one or more mutations known to alter regulation of damage inducible functions. As is true in ssb + strains tif-1 (recA441) was found to allow thermal induction of prophage + and Weigle reactivation in ssb-1 and ssb-113 strains. Furthermore, tif-1 decreased the UV sensitivity of the ssb-113 strain slightly and permitted UV induction of prophage + at 30°C. Strains carrying the recAo281 allele were also constructed. This mutation causes high constitutive levels of RecA protein synthesis and relieves much of the UV sensitivity conferred by lexA alleles without restoring SOS (error-prone) repair. In contrast, the recAo281 allele failed to alleviate the UV sensitivity associated with either ssb mutation. In a lexA1 recAo281 background the ssb-1 mutation increased the extent of postirradiation DNA degradation and concommitantly increased UV sensitivity 20-fold to the level exhibited by a recA1 strain. The ssb-113 mutation also increased UV sensitivity markedly in this background but did so without greatly increasing postirradiation DNA degradation. These results suggest a direct role for SSB in recombinational repair apart from and in addition to its role in facilitating induction of the recA-lexA regulon.  相似文献   

12.
13.
DNA was purified from double minutes isolated from MTX-resistant EL4/8 mouse lymphoma cells, digested to completion with Bam H1 restriction endonuclease and cloned in lambda-1059. The properties of the library suggest that the DNA from which it was made was not detectably contaminated with non-dm chromosome material, and that the library is essentially complete for sequences contained in Bam H1 restriction fragments between 9 and 19 kb. The inserts of some selected lambda-recombinants were subcloned in pBR328 or pAT153 to separate sequences of differing repetition frequency. Clones representative of different classes of sequences were used as probes to Southern transfers of Bam H1 digested total nuclear DNAs of various MTX-resistant cell lines. The results clearly show that the amplified unit of each cell line has a unique structure, and that different amplified units differ widely in their sequence composition.  相似文献   

14.
15.
16.
17.
18.
19.
20.
The binding of radioactively labeled lymphotoxin (LT) to both lymphotoxin-sensitive and -resistant cell clones was examined. The sensitive clone had a low- capacity, high-affinity ("specific") binding component, the curve of which closely followed the cytotoxicity curve of the lymphocyte mediator. The capacity of this binding component was calculated to be about 600 molecules of LT/cell. In addition, there was a low-affinity, high-capacity ("nonspecific") binding component. In striking contrast, the high-affinity, low-capacity ("specific") component was absent or greatly diminished from the resistant clone, whereas the low-affinity, high-capacity ("nonspecific") component was present at a similar level as in the sensitive cells.These binding characteristics closely resemble those observed by us and other investigators working with a variety of steroid hormones in steroid-sensitive and- resistant cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号