首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper is an overview of the experimental research into the effects of flue magnesite dust in the magnesite industry in which the raw material (magnesite) is processed into refractory magnesite clinker. The issues related to dust are divided into two problem areas: a) dust aerosol arising in the process of ore mining and consisting largely of magnesite (MgCO3) and b) dust aerosol originating during ore baking in rotatory furnaces and made up mostly of MgO. Thus, larger groups of people become exposed to these aerosols as a result of solid particles escaping into the atmosphere than in the case of occupational exposure. Experimental research carried out on laboratory animals after chamber exposure provided findings on the deposition, retention and elimination of magnesite dust, on impaired balance between magnesium and calcium leading to damage of biological membranes, on how the immune profile or reproduction and embryogenesis is impacted as well as on the possible interaction with sodium salicylate as a result of an impaired acid base balance. These findings are followed up by evidence produced in the course of biological monitoring (Part II).  相似文献   

2.
Magnesite is a primary source of magnesium and its compounds. The major problem in its practical use are the impurities such as silicon, iron and calcium carbonate. Some magnesite ores in Turkey cannot be used due to a high amount of CaCO3 (≥3%). In this study, bacterial isolates from magnesite quarries in Mersin were tested by plate assay for their ability to decalcify magnesite. A bacterial strain producing the largest clear zones in the plate assay was identified as Pseudomonas oryzihabitans by 16S rDNA-PCR and applied to magnesite ore. It was found to be effective in decalcifying magnesite ore without significant concurrent dissolution of the magnesium carbonate.  相似文献   

3.
The role of silica in Bacillus licheniformis   总被引:1,自引:1,他引:0  
Bacillus licheniformis , an indigenous strain from high silica-containing magnesite ore was found to tolerate 250 μg of Si/ml (Na2SiO3.5H2O) in the medium. During growth the bacterium was capable of accumulating about 21 μg of Si/ml within 8 h. The absence of phosphate was highly inhibitory to its growth as well as silicon absorption. A relationship between growth, utilization of Si and its release from magnesite ore is discussed. A feedback inhibition of Si release from the ore has been predicted.  相似文献   

4.
Abstract

Magnesite is an important raw material used in various industrial applications, especially the production of high-temperature resistant materials. Due to its high reactant nature, magnesite ore is not found in pure form and it contains a great variety of pollutants such as calcium compounds, which restrict its use when exceeding 1% of the ore. Thus, the development of efficient strategies for the removal of pollutants remains a crucial step for magnesite utilization. In this regard, our present work was conducted to isolate and identify active fungal strains that remove calcium pollutants without changing the main magnesium content of the ore. For this aim, magnesite ore samples were collected from two quarries (Turanoca?? and Ortaocak) of KÜMA? Magnesite Inc. and fungal isolation studies were done by using the ore’s flora. Active isolates were chosen according to their CaCO3 and MgCO3 dissolving capabilities and identified by using conventional light microscopy and molecular characterization techniques. 71 fungal isolates were obtained from the isolation step and 14 of them were chosen as active isolates that solve calcium compounds while not affecting the magnesium component. The data of the microscopic examination and 18S rDNA gene sequence analysis showed that 14 active strains with magnesite enrichment potential grouped in Aspergillus alliaceus (3), Aspergillus flavus (2), Aspergillus leporis (1), Aspergillus nomius (1), Fusarium tricinctum (2), Penicillium chrysogenum (1) and Penicillium sp. (4).  相似文献   

5.
Abstract

Calcium carbonate (CaCO3) is found in different polymorph structures such as aragonite, vaterite, and calcite. The most common and stable form of CaCO3, calcite, which is abundant in sedimentary rocks as magnesite ore. Magnesite has application areas in many industrial fields including paper, pharmaceutical and refractory materials. Magnesite is theoretically formulated MgCO3, but contains many impurities (silicium, iron, and also calcite), that limits its usability and applicability. In this research, we aimed to investigate the decalcification possibility of the raw magnesite material through application of Enterococcus feacelis (EF) with CaCO3 dissolution ability. The exact mechanism of CaCO3 dissolution was investigated by carbonic anhydrase enzyme assay and HPLC analysis of organic acids produced by EF. Consequently, EF reduced the amount of CaCO3 from 2.94% to 0.49% which means a reduction (≈83.33%) in the rate of CaCO3 percentage. As a result of the experiments, it was observed that different organic acids produced by bacteria reacted with CaCO3 and removed the lime of magnesite ore. The bacteria used in the study did not show any pathogenic properties in rats, thus, it can be used safely for the industrial applications.  相似文献   

6.
During mineral processing, concentrates of sulfide minerals of economic interest are formed by froth flotation of fine ore particles. The method works well but recovery and selectivity can be poor for ores with complex mineralogy. There is considerable interest in methods that improve the selectivity of this process while avoiding the high costs of using flotation chemicals. Here we show the first application of phage biotechnology to the processing of economically important minerals in ore slurries. A random heptapeptide library was screened for peptide sequences that bind selectively to the minerals sphalerite (ZnS) and chalcopyrite (CuFeS2). After several rounds of enrichment, cloned phage containing the surface peptide loops KPLLMGS and QPKGPKQ bound specifically to sphalerite. Phage containing the peptide loop TPTTYKV bound to both sphalerite and chalcopyrite. By using an enzyme-linked immunosorbant assay (ELISA), the phage was characterized as strong binders compared to wild-type phage. Specificity of binding was confirmed by immunochemical visualization of phage bound to mineral particles but not to silica (a waste mineral) or pyrite. The current study focused primarily on the isolation of ZnS-specific phage that could be utilized in the separation of sphalerite from silica. At mining sites where sphalerite and chalcopyrite are not found together in natural ores, the separation of sphalerite from silica would be an appropriate enrichment step. At mining sites where sphalerite and chalcopyrite do occur together, more specific phage would be required. This bacteriophage has the potential to be used in a more selective method of mineral separation and to be the basis for advanced methods of mineral processing.  相似文献   

7.
1. Silica in the leaves of grasses can act as a defence against both vertebrate and invertebrate herbivores. The mechanisms by which silica affects herbivore performance are not well characterized. Here we expose an insect herbivore Spodoptera exempta to high-silica diets and test two mechanisms by which silica has been proposed to act as a defence. First, that silica reduces the digestibility of leaves and second, that silica causes wear to insect mandibles, both of which could potentially impact on herbivore performance. 2. Silica reduced the efficiency with which S. exempta converted ingested food to body mass and the amount of nitrogen absorbed from their food, leading to reduced insect growth rates. The measure of how efficiently herbivores utilize digested food (ECD) was unaffected by silica. 3. These effects occurred even with short-term exposure to silica-rich diets, but they also increased markedly with the duration of exposure and affected late instars more than early instar larvae. This appears to be due to the progressive impacts of silica with longer exposure times and suggests that herbivores cannot adapt to silica defences, nor do they develop a tolerance for silica with age. 4. Exposure to silica-rich diets caused increased mandible wear in S. exempta. This effect was extremely rapid, occurring within a single instar, further reducing feeding efficiency and growth rates. These effects on insect growth and feeding efficiency are nonreversible, persisting after the herbivore has switched diets. Up to a third of this residual impact can be explained by the degree of mandible wear caused by previous silica-rich diets. 5. The impacts of silica on S. exempta larvae were progressive with exposure time and could not be compensated for, even by switching to a different diet. Thus, herbivores cannot easily adapt to physical defences such as silica, suggesting this defence will have major implications for herbivore fitness.  相似文献   

8.
Four silica supports differing in pore dimensions were activated by treatment with SiCl4 and then with ethylenediamine to obtain alkylamine groups on the silica surface. Three enzymes, peroxidase from cabbage, glucoamylase from Aspergillus niger C and urease from soybean were immobilized on these supports using glutaraldehyde as coupling agent. It was found that the protein content, the retained enzymatic activity and the storage stability of the silica supported enzymes were considerably affected by support pore size and enzyme molecular weight, the factors which are supposed to alter protein distribution inside the support pores. The highest activity was found for peroxidase and glucoamylase attached to the silica with the widest pores, but their loss in activity during storage was considerable. The urease retained less activity after immobilization, but its storage stability was excellent.  相似文献   

9.
This paper describes the development and optimization of a novel class of SERS-based immuno-nanosensors for the label-free detection of specific proteins in complex environments (e.g., cell culture matrices and intracellular environments). These SERS-based nanosphere sensors are fabricated by depositing multiple layers of silver on silica nanospheres, followed by binding of the antibody of interest to the silver surface via a short rigid crosslinker. In these studies, several different crosslinkers were characterized and evaluated for optimal nanosensor activity. The crosslinkers evaluated contained either thiol or isothiocyanate functionalities, which bind to the silver surface on one end, while the other end of the crosslinker contained either a carboxylic or primary amine group, which reacts readily with the antibodies. These SERS-based nanosensors were also optimized for underlying silica sphere diameters, silica sphere coating conditions during silver deposition, number of silver layers applied, and silver surface coverage with crosslinkers. Upon optimization, the nanosensors were evaluated by monitoring their response to various antigens (e.g., human insulin or interleukin II) in complex environments.  相似文献   

10.
Many pigmented heterokonts are able to synthesize elements of their cell walls (the frustules) of dense biogenic silica. These include diatom algae, which occupy a significant place in the biosphere. The siliceous frustules of diatoms have species-specific patterns of surface structures between 10 and a few hundred nanometers. The present review considers possible mechanisms of uptake of silicic acid from the aquatic environment, its transport across the plasmalemma, and intracellular transport and deposition of silica inside the specialized Silica Deposition Vesicle (SDV) where elements of the new frustule are formed. It is proposed that a complex of silicic acid with positively charged proteins silaffins and polypropylamines remains a homogeneous solution during the intracellular transport to SDV, where biogenic silica precipitates. The high density of the deposited biogenic silica may be due to removal of water from the SDV by aquaporins followed by syneresis--a process during which pore water is expelled from the network of the contracting gel. The pattern of aquaporins in the silicalemma, the membrane embracing the SDV, can determine the pattern of species-specific siliceous nanostructures.  相似文献   

11.
Kim JW  Kim LU  Kim CK 《Biomacromolecules》2007,8(1):215-222
Nearly monodispersed silica nanoparticles having a controlled size from 5 to 450 nm were synthesized via a sol-gel process, and then the optimum conditions for the surface treatment of the synthesized silica nanoparticles with a silane coupling agent (i.e., 3-methacryloxypropyltrimethoxysilane (gamma-MPS)) were explored to produce dental composites exhibiting enhanced adhesion and dispersion of silica nanoparticles in the resin matrix. The particle size was increased by increasing amounts of the catalyst (NH4OH) and silica precursor (tetraethylorthosilicate, TEOS) and by decreasing the amount of water in the reaction mixtures regardless of solvents used for the synthesis. The particle size prepared by using ethanol as a solvent was significantly larger than that prepared by using methanol as a solvent when the composition of the reaction mixture was fixed. The nanosized particles in the 5-25 nm range were aggregated. The amount of grafted gamma-MPS on the surface of the synthesized silica nanoparticles was dependent on the composition of the reaction mixture when an excess amount of gamma-MPS was used. When surface treatment was performed at optimum conditions found here, the amount of the grafted gamma-MPS per unit surface area of the silica nanoparticles was nearly the same regardless of the particle size. Dispersion of the silica particles in the resin matrix and interfacial adhesion between silica particles and resin matrix were enhanced when surface treated silica nanoparticles were used for preparing dental nanocomposites.  相似文献   

12.
In recognition of the co-carcinogenic effect of particulate matter and chemical carcinogens, we investigated the effect of particulate silica on the rates of membrane uptake of 1,2-benzanthracene. The fluorescence emission spectra and the apparent quantum yields of benzathracene are dependent upon adsorption to silica and upon the surface density of benzathracene on the silica. The fluorescence spectral shifts which occur upon transfer of benzathracene from silica surface to phospholipid vesicles provided a convenient means to quantitate the membrane uptake of benzanthracene from particulates.The rate of benzathracene uptake by dipalmitoyl-L-α-phosphatidylcholine vesicles was independent of the concentration of lipid, indicating that the rate-limiting step may involve its sulubilization in the aqueous phase. These uptake rates were also independent of the surface density of benzanthracene on the silica, indicating that the benzanthracene molecules are dispersed uniformly on the silica surface.Rates of membrane uptake of benzanthracene from the crystalline, microcrystalline, and the silica-absorbed states were compared, and are greatly enhanced by a reduction in crystal size. Silica-adsorbed benzanthracene had the most rapid rate of membrane uptake. Silica did not cause disruption of the lipid vesicles.These results indicate that particulates can enhance the cellular availability of chemical carcinogens.  相似文献   

13.

We report immobilizing Nile Blue A, which is a cationic fluorescent dye emitting in the near-infrared region, in the porous silica layer on gold nanorod and its fluorescence enhancement by strengthened electromagnetic field based on surface plasmon resonance. The effect of the spacer corresponding to the silica layer on the metal-enhanced fluorescence effect is also discussed in detail. Hollow silica nanorod was in advance prepared, and then the silica layer was partly etched to increase the porosity for the improvement of the mass transfer. Subsequently, gold nanorod was fabricated in the restricted space of hollow silica nanorod. Finally, Nile Blue A was physically immobilized in the porous silica layer on gold nanorod through electrostatic interactions. The fluorescence enhancement of Nile Blue A based on surface plasmon resonance was semi-quantified by comparative experiments using hollow silica nanorod, which is exactly the same structure except for gold as silica-coated gold nanorod. Since our results demonstrated that the porosity degree of the silica layer significantly affected the fluorescence enhancement of Nile Blue A, it is hopeful that our design concept, distinct from the conventional one, can lay a foundation for further development of near-infrared fluorescence nanomaterials.

  相似文献   

14.
In recognition of the co-carcinogenic effects of particulate matter and chemical carcinogens, we investigated the effect of particulate silica on the rates of membrane uptake of 1,2-benzanthracene. The fluorescence emission spectra and the apparent quantum yields of benzanthracene and dependent upon adsorption to silica and upon the surface density of benzanthracene on the silica. The fluorescence spectral shifts which occur upon transfer of benzanthracene from the silica surface to phospholipid vesicles provided a convenient means to quantitate the membrane uptake of benzanthracene from particulates. The rate of benzanthracene uptake by dipalmitoyl-L-alpha-phosphatidylcholine vesicles was independent of the concentration of lipid, indicating that the rate-limiting step may involve its solubilization in the aqueous phase. These uptake rates were also independent of the surface density of benzanthracene on the silica, indicating that the benzathracene molecules are dispersed uniformly on the silica surface. Rates of membrane uptake of benzanthracene from the crystalline, microcrystalline, and the silica-absorbed states were compared, and are greatly enhanced by a reduction in crystal size. Silica-adsorbed benzanthracene had the most rapid rate of membrane uptake. Silica did not cause disruption of the lipid vesicles. These results indicate that particulates can enhance the cellular availability of the chemical carcinogens.  相似文献   

15.
Organic components associated with diatom cell wall silica are important for the formation, integrity, and function of the cell wall. Polysaccharides are associated with the silica, however their localization, structure, and function remain poorly understood. We used imaging and biochemical approaches to describe in detail characteristics of insoluble organic components associated with the cell wall in 5 different diatom species. Results show that an insoluble organic matrix enriched in mannose, likely the diatotepum, is localized on the proximal surface of the silica cell wall. We did not identify any organic matrix embedded within the silica. We also identified a distinct material consisting of glucose polymer with variable localization depending on the species. In some species this component was directly involved in the morphogenesis of silica structure while in others it appeared to be only a structural component of the cell wall. A novel glucose-rich structure located between daughter cells during division was also identified. This work for the first time correlates the structure, composition, and localization of insoluble organic matrices associated with diatom cell walls. Additionally we identified a novel glucose polymer and characterized its role during silica structure formation.  相似文献   

16.
Summary In order to simulate the fate of biogenic silica generated in the surface waters of the Southern Ocean, the dissolution of silica frustules was studied for seven natural assemblages of diatoms, collected during summer 1984 in the Indian sector, and two typical Antarctic diatoms (Nitzschia cylindrus and Chaetoceros deflandrei), following the procedure of Kamatani and Riley (1979). For mean summer conditions in the surface waters of the Southern Ocean (2-3d-1 for the natural assemblages. The silica frustules trapped by fecal pellets and by gelatinous aggregates, and rapidly transported through the cold waters of the Circumpolar Current, reach the sea bottom of either the continental shelves of the abysses without loosing much of the initial amount of silica (less than 10%). A model based on Stokes' law, modified to take in account of non ideal conditions and of the upwelling rate, is used in order to simulate the fate of silica of unaggregated particles settling down in the cold waters of the Antarctic Divergence. It supports the ideas that 1-the cycle of siliceous particles which radii are <2 m (i.e., of a part of the nanoplankton) is completely achieved in the surface layer, 2-although the biogenic silica of large unaggregated particles (radii over 25 m) may reach the seabottom (within one month to a few years) without complete dissolution, the main explanation for the accumulation of biogenic silica on Antarctic abysses remains transport by fecal pellets and gelatinous aggregates.  相似文献   

17.
A novel route to synthesize an organic/inorganic hybrid material containing short peptide chains attached on the surface (e.g., oligo(S-benzyl-L-cysteine)) was developed. Poly[N-(beta-aminoethylene)acrylamide] (PAEA) adsorbed onto silica particles surface (main diameter between 15 and 40 microm) was irreversibly fixed by the reaction between the accessible primary amino groups of the PAEA and 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTCDA). After the deposition of PAEA from a salt-free aqueous solution onto microporous silica particles and stabilization by a cross-linking reaction with BTCDA, five repeated coupling reactions of boc-S-benzyl-L-cysteine were performed. Changes in surface charges during the polyelectrolyte adsorption were studied by electrokinetic measurements. The cross-linking degree was a tool to control the surface charge of the PAEA/silica hybrid particles. X-ray photoelectron spectroscopy (XPS) was employed to obtain information about the amount of the adsorbed polyelectrolyte as well as the amount of the amino acid S-benzyl-L-cysteine that was covalently bound to the hybrid particle surface and polycondensed there. In the XPS spectra, the sulfur peaks (S 2p3/2, S 2p1/2, and S 2s) qualitatively and quantitatively indicated the presence of the amino acid on the hybrid material surface. After each step of coupling, the intensity of the S 2s peak was increased by a constant value. This indicates the oligopeptide growth. The novel hybrid material offers possibilities for subsequent derivatization reactions such as coupling other amino acids, peptides, obtaining hybrid ion exchange resins, and so forth.  相似文献   

18.
In 2002, section B of the Larsen ice shelf, off of the Eastern Antarctic Peninsula, collapsed and created the opportunity to study whether the changes at the sea surface left evidence in the sedimentary record. Biogenic silica is major constituent of Antarctic marine sediment, and its presence in the sediment column is associated with diatom production in the euphotic zone. The abundance of diatom valves and the number of sponge spicules in the biogenic silica was analyzed to determine how the origin of the biogenic silica in the upper layers of the sediment column responded to recent environmental changes. Diatom valves were present only in the upper 2 cm of sediment, which roughly corresponds to the period after the collapse of the ice shelf. In contrast, sponge spicules, a more robust form of biogenic silica, were also found below the upper 2 cm layer of the sediment column. Our results indicate that in this region most of the biogenic silica in the sedimentary record originated from sponge spicules rather than diatoms during the time when the sea surface was covered by the Larsen ice shelf. Since the collapse of the ice shelf, the development of phytoplankton blooms and the consequent influx of diatom debris to the seabed have shifted the biogenic silica record to one dominated by diatom debris, as occurs in most of the Antarctic marine sediment. This shift provides further evidence of the anthropogenic changes to the benthic habitats of the Antarctic and will improve the interpretation of the sedimentary record in Polar Regions where these events occur.  相似文献   

19.
Electron spin resonance spectroscopy provided evidence for formation of hydroxyl radicals during ultraviolet photolysis (254 nm) at −170°C of H2O adsorbed on silica gel or of silica gel alone. The carboxyl radical was observed when CO or CO2 or a mixture of CO and CO2 adsorbed on silica gel at −170°C was irradiated. The ESR signals of these radicals slowly disappeared when the irradiated samples were warmed to room temperature. However, re-irradiation of CO or CO2, or the mixture CO and CO2 on silica gel at room temperature then produced a new species, the carbon dioxide anion radical, which slowly decayed and which was identical with that produced by direct photolysis of formic acid adsorbed on silica gel. The primary photochemical process may involve formation of hydrogen and hydroxyl radicals by means of (1) photodissociation of H2O physically adsorbed on the silica gel, or (2) absorption of the excitation energy by the silica gel surface with subsequent cleavage of the silanol bonds, or (3) dissociation of H2O molecules through photosensitization by the surfaces or a combination of (1) to (3). Subsequent reactions of these radicals with adsorbed CO or CO2 or both yield carboxyl radicals, CO2H, the precursors of formic acid. Our results confirm the formation of formic acid under simulated. Martian conditions and provide a mechanistic basis for gauging the potential importance of gas-solid photochemistry for chemical evolution on other extraterrestrial bodies, on the primitive earth and on dust grains in the interstellar medium.  相似文献   

20.
Tropoelastin is the precursor of the extracellular protein elastin and is utilized in tissue engineering and implant technology by adapting the interface presented by surface-bound tropoelastin. The preferred orientation of the surface bound protein is relevant to biointerface interactions, as the C-terminus of tropoelastin is known to be a binding target for cells. Using recombinant human tropoelastin we monitored the binding of tropoelastin on hydrophilic silica and on silica made hydrophobic by depositing a self-assembled monolayer of octadecyl trichlorosilane. The layered organization of deposited tropoelastin was probed using neutron and X-ray reflectometry under aqueous and dried conditions. In a wet environment, tropoelastin retained a solution-like structure when adsorbed on silica but adopted a brush-like structure when on hydrophobized silica. The orientation of the surface-bound tropoelastin was investigated using cell binding assays and it was found that the C-terminus of tropoelastin faced the bulk solvent when bound to the hydrophobic surface, but a mixture of orientations was adopted when tropoelastin was bound to the hydrophilic surface. Drying the tropoelastin-coated surfaces irreversibly altered these protein structures for both hydrophilic and hydrophobic surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号