首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symbiotic bacterium closely related to the secondary symbiont of tsetse flies, Sodalis glossinidius, has been described from the bloodsucking fly Craterina melbae. Phylogenetic analysis of two genes, 16S rRNA gene and component of type three secretion system, placed the bacterium closer to the Sitophilus-derived branch of Sodalis than to the tsetse symbionts. This indicates that the Craterina-derived lineage of Sodalis originated independent of the tsetse flies symbionts and documents the capability of Sodalis bacteria either to switch between different host groups or to establish the symbiosis by several independent events.  相似文献   

2.

Background

Previous studies have shown substantial differences in Sodalis glossinidius and trypanosome infection rates between Glossina palpalis palpalis populations from two Cameroonian foci of human African trypanosomiasis (HAT), Bipindi and Campo. We hypothesized that the geographical isolation of the two foci may have induced independent evolution in the two areas, resulting in the diversification of symbiont genotypes.

Methodology/Principal Findings

To test this hypothesis, we investigated the symbiont genetic structure using the allelic size variation at four specific microsatellite loci. Classical analysis of molecular variance (AMOVA) and differentiation statistics revealed that most of the genetic diversity was observed among individuals within populations and frequent haplotypes were shared between populations. The structure of genetic diversity varied at different geographical scales, with almost no differentiation within the Campo HAT focus and a low but significant differentiation between the Campo and Bipindi HAT foci.

Conclusions/Significance

The data provided new information on the genetic diversity of the secondary symbiont population revealing mild structuring. Possible interactions between S. glossinidius subpopulations and Glossina species that could favor tsetse fly infections by a given trypanosome species should be further investigated.  相似文献   

3.
Recent studies of Palpalis group tsetse [Glossina fuscipes fuscipes (Diptera: Glossinidae) in Kenya] suggest that small (0.25 × 0.25 m) insecticide-treated targets will be more cost-effective than the larger (≥1.0 × 1.0 m) designs currently used to control tsetse. Studies were undertaken in Zimbabwe to assess whether small targets are also more cost-effective for the Morsitans group tsetse, Glossina morsitans morsitans and Glossina pallidipes. Numbers of tsetse contacting targets of 0.25 × 0.25 m or 1.0 × 1.0 m, respectively, were estimated using arrangements of electrocuting grids which killed or stunned tsetse as they contacted the target. Catches of G. pallidipes and G. m. morsitans at small (0.25 × 0.25 m) targets were, respectively, ~1% and ~6% of catches at large (1.0 × 1.0 m) targets. Hence, the tsetse killed per unit area of target was greater for the larger than the smaller target, suggesting that small targets are not cost-effective for use against Morsitans group species. The results suggest that there is a fundamental difference in the host-orientated behaviour of Morsitans and Palpalis group tsetse and that the former are more responsive to host odours, whereas the latter seem highly responsive to visual stimuli.  相似文献   

4.
ABSTRACT. The respiratory metabolism of laboratory-reared and wild-caught Glossina morsitans and wild-caught G. pallidipes males is described in relation to temperature. A common Q10 response to differences in temperature was shown by all groups. The effect of in utero larval development on the respiration of G. morsitans females was measured. Pregnancy caused a considerable rise in respiration at the L1 stage, and this high level was maintained until larviposition. Continuous respiration measurements of G. morsitans for several days after a blood-meal (using a continuously recording respirometer) suggest a higher energy cost of digestion than previously reported, and a direct relationship between blood-meal size and respiration.  相似文献   

5.
The htrB gene was discovered because its insertional inactivation interfered with Escherichia coli growth and viability at temperatures above 32.5°C, as a result of accumulation of phospholipids. The msbA gene was originally discovered because when cloned on a low-copy-number plasmid vector it was able to suppress the temperature-sensitive growth phenotype of an htrB null mutant as well as the accumulation of phospholipids. The msbA gene product belongs to the superfamily of ABC transporters, a universally conserved family of proteins characterized by a highly conserved ATP-binding domain. The msbA gene is essential for bacterial viability at all temperatures. In order to understand the physiological role of the MsbA protein, we mutated the ATP-binding domain using random PCR mutagenesis. Six independent mutants were isolated and characterized. Four of these mutations resulted in single-amino-acid substitutions in non-conserved residues and were able to support cell growth at 30°C but not at 43°C. The remaining two mutations behaved as recessive lethals, and resulted in single-amino-acid substitutions in Walker motif B, one of the two highly conserved regions of the ATP-binding domain. Despite the fact that neither of these two mutant proteins can support E. coli growth, they both retained the ability to bind ATP in vitro. In addition, we present evidence to show that W-acetyl [3H]-glucosamine, a precursor of lipopolysaccharides, accumulates at the non-permissive temperature in the inner membrane of either htrB null or msbA conditional lethal strains. Translocation of the precursor to the outer membrane is restored by transformation with a plasmid containing the wild-type msbA gene. A possible role for MsbA  相似文献   

6.
The Tat protein export system serves to export folded proteins harboring an N-terminal twin arginine signal peptide across the cytoplasmic membrane. In this study, we have used gene expression profiling of Escherichia coli supported by phenotypic analysis to investigate how cells respond to a defect in the Tat pathway. Previous work has demonstrated that strains mutated in genes encoding essential Tat pathway components are defective in the integrity of their cell envelope because of the mislocalization of two amidases involved in cell wall metabolism (Ize, B., Stanley, N. R., Buchanan, G., and Palmer, T. (2003) Mol. Microbiol. 48, 1183-1193). To distinguish between genes that are differentially expressed specifically because of the cell envelope defect and those that result from other effects of the tatC deletion, we also analyzed two different transposon mutants of the DeltatatC strain that have their outer membrane integrity restored. Approximately 50% of the genes that were differentially expressed in the tatC mutant are linked to the envelope defect, with the products of many of these genes involved in self-defense or protection mechanisms, including the production of exopolysaccharide. Among the changes that were not explicitly linked to envelope integrity, we characterized a role for the Tat system in iron acquisition and copper homeostasis. Finally, we have demonstrated that overproduction of the Tat substrate SufI saturates the Tat translocon and produces effects on global gene expression that are similar to those resulting from the DeltatatC mutation.  相似文献   

7.
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIAGlc, a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIAGlc, CAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIAGlc. In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIAGlc were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIAGlc. In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.  相似文献   

8.
9.
10.
A new fluorescence in situ hybridization (FISH) method using peptide nucleic acid (PNA) probes and an array scanner for rapid detection, identification, and enumeration of Escherichia coli is described. The test utilizes Cy3-labeled peptide nucleic acid (PNA) probes complementary to a specific 16S rRNA sequence of E. coli. Samples were filtered and incubated for 5 h, the membrane filters were then analyzed by fluorescence in situ hybridization and results were visualized with an array scanner. Results were provided as fluorescent spots representing E. coli microcolonies on the membrane filter surface. The number of fluorescent spots correlated to standard colony counts up to 100 colony-forming units per membrane filter. Above this level, better accuracy was obtained with PNA FISH due to the ability of the scanner to resolve neighboring microcolonies, which were not distinguishable as individual colonies once they were visible by eye.  相似文献   

11.
Recently, electron microscopic studies on the eubacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli have revealed the existence of cytoskeletal elements so far unknown in prokaryotes. The wall-less bacterium M. pneumoniae contains, in close vicinity to the inner face of the cytoplasmic membrane, a helically organized lining composed of protein elements that form a regular network of meshes that encloses the entire cytoplasm. Numerous regularly spaced pin-like structural elements, the stalks with terminal knobs, connect the lining with the cytoplasmic membrane. In this bacterium, a specific rod-like structural element is located in the tip region. Occasionally, it is bent or twisted. It consists of two matching blade-like sub-elements. A number of parallel linkers, extending from the edges of the rod, make contact with the lining. The proximal end of the rod is attached to a wheel-like complex. Fibrils originating from the wheel cross the cytoplasm and make contact with the lining. E. coli contains a similar helically organized lining close to the inner face of the cytoplasmic membrane. Groups of ribosomes (polysomes) were seen to be attached to the helical elements of the lining. A feature that is common to both bacteria and to Thermoanaerobacterium sp. appears to be that the lining and the fibrils crossing the cytoplasm contain a high number of copies of the bacterial elongation factor Tu (EF-Tu). This indicates that this protein may play an important role as a structural element in bacterial cytoskeletons. This notion was supported by experiments in which the cytoskeleton in E. coli was destabilized by induced expression of truncated EF-Tu, with the consequence of cell lysis, and by the finding that in vitro polymerization of monomeric EF-Tu into protofilaments was hindered in a mixture of full-size EF-Tu and truncated EF-Tu consisting of domain 3 only. Current research and developmental efforts are aimed at the design of a new class of antibacterial drugs, acting by destabilization of the EF-Tu-containing bacterial cytoskeleton, and of an innovative mode of inducible lysis of recombinant bacteria by controlled destabilization of the EF-Tu-containing cytoskeleton.  相似文献   

12.
Energy-coupled transporters in the outer membrane of Escherichia coli and other Gram-negative bacteria allow the entry of scarce substrates, toxic proteins, and bacterial viruses (phages) into the cells. The required energy is derived from the proton-motive force of the cytoplasmic membrane, which is coupled to the outer membrane via the ExbB-ExbD-TonB protein complex. Knowledge of the structure of this complex is required to elucidate the mechanisms of energy harvesting in the cytoplasmic membrane and energy transfer to the outer membrane transporters. Here we solubilized an ExbB oligomer and an ExbB-ExbD subcomplex from the cytoplasmic membrane with the detergent undecyl maltoside. Using laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS), we determined at moderate desorption laser energies the oligomeric structure of ExbB to be mainly hexameric (ExbB(6)), with minor amounts of trimeric (ExbB(3)), dimeric (ExbB(2)), and monomeric (ExbB(1)) oligomers. Under the same conditions ExbB-ExbD formed a subcomplex consisting of ExbB(6)ExbD(1), with a minor amount of ExbB(5)ExbD(1). At higher desorption laser intensities, ExbB(1) and ExbD(1) and traces of ExbB(3)ExbD(1), ExbB(2)ExbD(1), ExbB(1)ExbD(1), ExbB(3), and ExbB(2) were observed. Since the ExbB(6) complex and the ExbB(6)ExbD(1) complex remained stable during solubilization and subsequent chromatographic purification on nickel-nitrilotriacetate agarose, Strep-Tactin, and Superdex 200, and during native blue gel electrophoresis, we concluded that ExbB(6) and ExbB(6)ExbD(1) are subcomplexes on which the final complex including TonB is assembled.  相似文献   

13.
Assembly of the full Escherichia coli K-12 lon gene from the EcoRI--SphI fragment of the bacterial DNA ("modified" gene) cloned and sequenced earlier and the PstI fragment of the same DNA containing 3'-terminal region of the lon gene has been performed. Both "modified" and full genes showed all phenotype properties of lon gene. The complete nucleotide sequence of the gene (2770 bp) coding for the 784 amino acid sequence of protease La was determined. Location of catalytically active serine, histidine and aspartic acid residues was suggested, and ATP-binding site found. The lon gene and protease La structures we found are compared with those described independently and differences observed are discussed.  相似文献   

14.
15.
Type IIb heat-labile enterotoxin (LT-IIb) is produced by Escherichia coli 41. Restriction fragments of total cell DNA from strain 41 were cloned into a cosmid vector, and one cosmid clone that encoded LT-IIb was identified. The genes for LT-IIb were subcloned into a variety of plasmids, expressed in minicells, sequenced, and compared with the structural genes for other members of the Vibrio cholerae-E. coli enterotoxin family. The A subunits of these toxins all have similar ADP-ribosyltransferase activity. The A genes of LT-IIa and LT-IIb exhibited 71% DNA sequence homology with each other and 55 to 57% homology with the A genes of cholera toxin (CT) and the type I enterotoxins of E. coli (LTh-I and LTp-I). The A subunits of the heat-labile enterotoxins also have limited homology with other ADP-ribosylating toxins, including pertussis toxin, diphtheria toxin, and Pseudomonas aeruginosa exotoxin A. The B subunits of LT-IIa and LT-IIb differ from each other and from type I enterotoxins in their carbohydrate-binding specificities. The B genes of LT-IIa and LT-IIb were 66% homologous, but neither had significant homology with the B genes of CT, LTh-I, and LTp-I. The A subunit genes for the type I and type II enterotoxins represent distinct branches of an evolutionary tree, and the divergence between the A subunit genes of LT-IIa and LT-IIb is greater than that between CT and LT-I. In contrast, it has not yet been possible to demonstrate an evolutionary relationship between the B subunits of type I and type II heat-labile enterotoxins. Hybridization studies with DNA from independently isolated LT-II producing strains of E. coli also suggested that additional variants of LT-II exist.  相似文献   

16.
Bacterial cytidine monophosphate (CMP) kinases are characterised by an insert enlarging their CMP binding domain, and by their particular substrate specificity. Thus, both CMP and 2'-deoxy-CMP (dCMP) are good phosphate acceptors for the CMP kinase from Escherichia coli (E. coli CMPK), whereas eukaryotic UMP/CMP kinases phosphorylate the deoxynucleotides with very low efficiency. Four crystal structures of E. coli CMPK complexed with nucleoside monophosphates differing in their sugar moiety were solved. Both structures with CMP or dCMP show interactions with the pentose that were not described so far. These interactions are lost with the poorer substrates AraCMP and 2',3'-dideoxy-CMP. Comparison of all four structures shows that the pentose hydroxyls are involved in ligand-induced movements of enzyme domains. It also gives a structural basis of the mechanism by which either ribose or deoxyribose can be accommodated. In parallel, for the four nucleotides the kinetic results of the wild-type enzyme and of three structure-based variants are presented. The phosphorylation rate is significantly decreased when either of the two pentose interacting residues is mutated. One of these is an arginine that is highly conserved in all known nucleoside monophosphate kinases. In contrast, the other residue, Asp185, is typical of bacterial CMP kinases. It interacts with Ser101, the only residue conserved in all CMP binding domain inserts. Mutating Ser101 reduces CMP phosphorylation only moderately, but dramatically reduces dCMP phosphorylation. This is the first experimental evidence of a catalytic role involving the characteristic insert of bacterial CMP kinases. Furthermore, this role concerns only dCMP phosphorylation, a feature of this family of enzymes.  相似文献   

17.
18.
Two tetraploid species of Hibiscus section Furcaria, H. acetosella and H. radiatus, have an AABB genomic constitution. The diploid species, H. cannabinus (AA) and H. surattensis (BB), were hybridized to develop interspecific alloploid (AB) hybrids. The synthetic interspecific hybrid exhibited intermediate morphological characters, with expression of domestication-related traits, but exhibited higher genomic association with the B genome donor. Evolution of allopolyploids in section Furcaria was found to be associated with mutations in repetitive sequences, leading to higher variation in the tetraploid genome. Allopolyploidization was observed to be associated with both loss of repetitive sequences and appearance of new alleles. Genetic diversity analysis using ISSR and cross-species SSR markers revealed a closer association of diploid genomes and high variability of tetraploid genomes. The evolution of AABB tetraploids in this section possibly took place by hybridization of the A and B genome in geographically isolated regions.  相似文献   

19.
Chemical-enzymatic synthesis and cloning in Escherichia coli of an artificial gene encoding the immunoactive peptide thymosin alpha 1 have been carried out. Recombinant plasmids were constructed which contain fusion genes coding for hybrids of human tumour necrosis factor (TNF) and thymosin alpha 1 as N- or C-terminal part of the hybrid protein. In the C-terminal hybrid protein, TNF and thymosin alpha 1 are linked through a methionine residue, thus allowing for thymosin alpha 1 to be cleaved off the rest of the hybrid protein with cyanogen bromide. In case of the N-terminal hybrid protein, the linker between the thymosin alpha 1 and TNF sequences is the acid-labile dipeptide Asp-Pro. Expression of the hybrid genes in E. coli and properties of the recombinant proteins were studied. The N-terminal hybrid protein was secreted into periplasmic space, in contrast with the C-terminal hybrid protein, which formed insoluble aggregates inside bacterial cells. Procedures for the isolation of both hybrid proteins were developed. The N-terminal hybrid protein displayed full biological activity in the cytotoxic assay on the mouse fibroblast L-929 whereas the C-terminal hybrid protein proved to be much less active. Treatment of the hybrid protein TNF-thymosin alpha 1 with cyanogen bromide lead to a mixture of two polypeptides, from which thymosin alpha 1 was purified to homogeneity by simple chromatographic procedures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号