首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT

This article explores the notion that peoples speaking Austronesian languages brought the ideology of social hierarchy based on hereditary leadership into the Pacific Islands. This social model contrasts with the strongly egalitarian leadership that likely characterised peoples already residing in New Guinea and nearby islands. While complex interactions between these two groups did occur, particularly in coastal areas, the latter populations rarely adopted hierarchical models of leadership. In contrast, the institution of hereditary leadership burgeoned into elaborate chiefdoms as Austronesian speakers expanded into Remote Oceania. Using linguistic and archaeological evidence, we argue that hereditary leadership, or the institutions to support it, may already have been in place in early Austronesian societies in Taiwan. We further evaluate this correlation by reviewing ethnographic reports of chiefs and reanalysing scholarly appraisals of big-man societies and chiefdoms. We conclude that the ‘Melanesian big-man vs. Polynesian chief’ contrast corresponds largely to the Austronesian and Non-Austronesian language divide; attention to which can clarify the development of hereditary leadership in the Pacific and illuminate historical relations among cultures in Near Oceania.  相似文献   

2.
The human colonization of Remote Oceania, the vast Pacific region including Micronesia, Polynesia, and Melanesia beyond the northern Solomon Islands, ranks as one of the greatest achievements of prehistory. Many aspects of human diversity have been examined in an effort to reconstruct this late Holocene expansion. Archaeolinguistic analyses describe a rapid expansion of Austronesian-speaking "Lapita people" from Taiwan out into the Pacific. Analyses of biological markers, however, indicate genetic contributions from Pleistocene-settled Near Oceania into Micronesia and Polynesia, and genetic continuity across Melanesia. Thus, conflicts between archaeolinguistic and biological patterns suggest either linguistic diffusion or gene flow across linguistic barriers throughout Melanesia. To evaluate these hypotheses and the general utility of linguistic patterns for conceptualizing Pacific prehistory, we analyzed 14 neutral, biparental genetic (short tandem repeat) loci from 965 individuals representing 27 island Southeast Asian, Melanesian, Micronesian, and Polynesian populations. Population bottlenecks during the colonization of Remote Oceania are indicated by a statistically significant regression of loss of heterozygosity on migration distance from island Southeast Asia (r = 0.78, p < 0.001). Genetic and geographic distances were consistently correlated (r > 0.35, p < 0.006), indicating extensive gene flow primarily focused among neighboring populations. Significant correlations between linguistic and geographic patterns and between genetic and linguistic patterns depended upon the inclusion of Papuan speakers in the analyses. These results are consistent with an expansion of Austronesian-speaking populations out of island Southeast Asia and into Remote Oceania, followed by substantial gene flow from Near Oceanic populations. Although linguistic and genetic distinctions correspond at times, particularly between Western and Central-Eastern Micronesia, gene flow has reduced the utility of linguistic data within Melanesia. Overall, geographic proximity is a better predictor of biparental genetic relationships than linguistic affinities.  相似文献   

3.
4.
The Lapita Cultural Complex, radiometrically dated to between 3,600 and 2,500 B.P., is regarded on archaeological evidence as ancestral to modern Austronesian-speaking cultures of eastern Melanesia and Polynesia. To date, there has been a lack of human skeletal and dental material from Lapita sites; thus, the present sample from Mussau Island, although small, offers an opportunity to present some preliminary observations of their importance to Oceanic prehistory. The present analysis, based mainly on teeth, suggests that the Mussau Island Lapita people had slightly closer affinities with Indonesian than with Melanesian populations. These results correspond well with linguistic and archaeological evidence regarding the origin of the Lapita Cultural Complex.  相似文献   

5.
A Taiwan origin for the expansion of the Austronesian languages and their speakers is well supported by linguistic and archaeological evidence. However, human genetic evidence is more controversial. Until now, there had been no ancient skeletal evidence of a potential Austronesian-speaking ancestor prior to the Taiwan Neolithic ∼6,000 years ago, and genetic studies have largely ignored the role of genetic diversity within Taiwan as well as the origins of Formosans. We address these issues via analysis of a complete mitochondrial DNA genome sequence of an ∼8,000-year-old skeleton from Liang Island (located between China and Taiwan) and 550 mtDNA genome sequences from 8 aboriginal (highland) Formosan and 4 other Taiwanese groups. We show that the Liangdao Man mtDNA sequence is closest to Formosans, provides a link to southern China, and has the most ancestral haplogroup E sequence found among extant Austronesian speakers. Bayesian phylogenetic analysis allows us to reconstruct a history of early Austronesians arriving in Taiwan in the north ∼6,000 years ago, spreading rapidly to the south, and leaving Taiwan ∼4,000 years ago to spread throughout Island Southeast Asia, Madagascar, and Oceania.  相似文献   

6.
Although genetic studies have contributed greatly to our understanding of the colonization of Near and Remote Oceania, important gaps still exist. One such gap is the Solomon Islands, which extend between Bougainville and Vanuatu, thereby bridging Near and Remote Oceania, and include both Austronesian-speaking and Papuan-speaking groups. Here, we describe patterns of mitochondrial DNA (mtDNA) and nonrecombining Y chromosome (NRY) variation in over 700 individuals from 18 populations in the Solomons, including 11 Austronesian-speaking groups, 3 Papuan-speaking groups, and 4 Polynesian Outliers (descended via back migration from Polynesia). We find evidence for ancient (pre-Lapita) colonization of the Solomons in old NRY paragroups as well as from M2-M353, which probably arose in the Solomons ~9,200 years ago and is the most frequent NRY haplogroup there. There are no consistent genetic differences between Austronesian-speaking and Papuan-speaking groups, suggesting extensive genetic contact between them. Santa Cruz, which is located in Remote Oceania, shows unusually low frequencies of mtDNA and NRY haplogroups of recent Asian ancestry. This is in apparent contradiction with expectations based on archaeological and linguistic evidence for an early (~3,200 years ago), direct colonization of Santa Cruz by Lapita people from the Bismarck Archipelago, via a migration that "leapfrogged" over the rest of the Solomons. Polynesian Outliers show dramatic island-specific founder events involving various NRY haplogroups. We also find that NRY, but not mtDNA, genetic distance is correlated with the geographic distance between Solomons groups and that historically attested spheres of cultural interaction are associated with the recent genetic structure of Solomons groups, as revealed by mtDNA HV1 sequence and Y-STR haplotype diversity. Our results fill an important lacuna in human genetic studies of Oceania and aid in understanding the colonization and genetic history of this region.  相似文献   

7.
Austronesian speaking peoples left Southeast Asia and entered the Western Pacific c.4000-3000 years ago, continuing on to colonise Remote Oceania for the first time, where they became the ancestral populations of Polynesians. Understanding the impact of these peoples on the mainland of New Guinea before they entered Remote Oceania has eluded archaeologists. New research from the archaeological site of Wañelek in the New Guinea Highlands has broken this silence. Petrographic and geochemical data from pottery and new radiocarbon dating demonstrates that Austronesian influences penetrated into the highland interior by 3000 years ago. One potsherd was manufactured along the northeast coast of New Guinea, whereas others were manufactured from inland materials. These findings represent the oldest securely dated pottery from an archaeological context on the island of New Guinea. Additionally, the pottery comes from the interior, suggesting the movements of people and technological practices, as well as objects at this time. The antiquity of the Wañelek pottery is coincident with the expansion of Lapita pottery in the Western Pacific. Such occupation also occurs at the same time that changes have been identified in subsistence strategies in the archaeological record at Kuk Swamp suggesting a possible link between the two.  相似文献   

8.
The "Polynesian motif" defines a lineage of human mtDNA that is restricted to Austronesian-speaking populations and is almost fixed in Polynesians. It is widely thought to support a rapid dispersal of maternal lineages from Taiwan ~4000 years ago (4 ka), but the chronological resolution of existing control-region data is poor, and an East Indonesian origin has also been proposed. By analyzing 157 complete mtDNA genomes, we show that the motif itself most likely originated >6 ka in the vicinity of the Bismarck Archipelago, and its immediate ancestor is >8 ka old and virtually restricted to Near Oceania. This indicates that Polynesian maternal lineages from Island Southeast Asia gained a foothold in Near Oceania much earlier than dispersal from either Taiwan or Indonesia 3-4 ka would predict. However, we find evidence in minor lineages for more recent two-way maternal gene flow between Island Southeast Asia and Near Oceania, likely reflecting movements along a "voyaging corridor" between them, as previously proposed on archaeological grounds. Small-scale mid-Holocene movements from Island Southeast Asia likely transmitted Austronesian languages to the long-established Southeast Asian colonies in the Bismarcks carrying the Polynesian motif, perhaps also providing the impetus for the expansion into Polynesia.  相似文献   

9.
ABSTRACT

This paper reviews previous attempts to characterise the nature of social differences among the Austronesian speakers of Taiwan and the theoretical roots of these efforts, including the contrast Marshall Sahlins’s drew between Melanesian Big-Men (achieved status) and Polynesian Chiefs (ascribed status). This contrast was later applied to the diverse social organisations found among the Austronesian speakers of Taiwan. However, linguistic research over the past three decades has suggested that Proto-Austronesians may have already developed chiefdoms and social hierarchies and that Taiwan was one of the key sites for the origin of Austronesian speakers. Some scholars thus concluded that the ‘egalitarian’ type of societies among the Austronesian Taiwan must have been the result of Japanese colonial policies. This paper intends to re-think this dichotomy with ethnographic material from Austronesian Taiwan, especially the Paiwan; to distinguish the ideological and practical dimensions of this historical reconstruction; and to examine the viability of the analytical tools which have been widely adopted in the anthropological literature on other Austronesian societies.  相似文献   

10.
DNA typing of HLA-DRB1 genes was conducted for 192 samples from the Gidra who speak one of the non-Austronesian languages and inhabit the southern lowlands of New Guinea. Comparison of the allele frequencies with those of eight other Oceanian populations reveals that the Gidra are genetically closest to the non-Austronesian-speaking Goroka and, next, to the Aboriginal Australian groups, but are remote from the Austronesian-speaking groups in mainland New Guinea and the rest of Melanesia. This finding clearly supports the hypothesis that non-Austronesians and Aboriginal Australians are descendants of the first-stage migrants to Oceania. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Taiwanese aborigines have been deemed the ancestors of Austronesian speakers which are currently distributed throughout two‐thirds of the globe. As such, understanding their genetic distribution and diversity as well as their relationship to mainland Asian groups is important to consolidating the numerous models that have been proposed to explain the dispersal of Austronesian speaking peoples into Oceania. To better understand the role played by the aboriginal Taiwanese in this diaspora, we have analyzed a total of 451 individuals belonging to nine of the tribes currently residing in Taiwan, namely the Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, and the Yami from Orchid Island off the coast of Taiwan across 15 autosomal short tandem repeat loci. In addition, we have compared the genetic profiles of these tribes to populations from mainland China as well as to collections at key points throughout the Austronesian domain. While our results suggest that Daic populations from Southern China are the likely forefathers of the Taiwanese aborigines, populations within Taiwan show a greater genetic impact on groups at the extremes of the current domain than populations from Indonesia, Mainland, or Southeast Asia lending support to the “Out of Taiwan” hypothesis. We have also observed that specific Taiwanese aboriginal groups (Paiwan, Puyuma, and Saisiyat), and not all tribal populations, have highly influenced genetic distributions of Austronesian populations in the pacific and Madagascar suggesting either an asymmetric migration out of Taiwan or the loss of certain genetic signatures in some of the Taiwanese tribes due to endogamy, isolation, and/or drift. Am J Phys Anthropol 150:551–564, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
The genetic structure of the Gidra-speaking population inhabiting 13 villages in Papua New Guinea was investigated, based on the analysis of HLA-DRB1 polymorphism. Nei's fixation indices (F(IS), F(IT), and F(ST)) showed that the Gidra villages were genetically differentiated. The genetic distances significantly correlated with the geographic distances among the 13 villages. Thus, it is likely that a low intervillage migration rate has been maintained since the Gidra community was established. Correspondence analysis revealed that the Gidra, who belong to non-Austronesian-speaking groups, are genetically located at the intermediate point between the Aboriginal Australian groups and the Austronesian-speaking groups. Moreover, the HLA-DRB1*0802 allele, which has been observed in only two Polynesian groups (Austronesian-speaking groups) of Oceanian populations, was also found in the Gidra. These results suggest that the admixture of Austronesian and indigenous non-Austronesian groups beyond the linguistic boundary occurred partly in Papua New Guinea before Austronesian groups spread to the Pacific.  相似文献   

13.
Over the past decade, the origin of the first Malayo-Polynesian settlers of the island Pacific has become a contentious issue in molecular anthropology as well as in archaeology and historical linguistics. Whether the descendants of the ancestral Malayo-Polynesian speakers moved rapidly through Indonesia and Island Melanesia in a few hundred years, or whether they were the product of considerable intermingling within the more westerly part of the latter region, it is widely accepted that they were the first humans to colonize the distant Pacific islands beyond the central Solomon Islands approximately 3,000 years ago. The Santa Cruz Islands in the Eastern Solomons would have most likely been the first in Remote Oceania to be colonized by them. Archaeologically, the first Oceanic Austronesian settlement of this region appears to have been overlain by various later influences from groups farther west in a complex manner. Molecular anthropologists have tended to equate the spread of various Austronesian-speaking groups with a particular mitochondrial variant (a 9-base-pair [bp] deletion with specific D-loop variants). We have shown before that this is an oversimplified picture, and assumed that the Santa Cruz situation, with its series of intrusions, would be informative as to the power of mitochondrial DNA haplotype interpretations. In the Santa Cruz Islands, the 9-bp deletion is associated with a small number of very closely related hypervariable D-loop haplotypes resulting in a star-shaped Bandelt median network, suggesting a recent population expansion. This network is similar to Polynesian median networks. In a pairwise mismatch comparison, the Santa Cruz haplotypes have a bimodal distribution, with the first cluster being composed almost entirely of the 9-bp-deleted haplotypes-again attesting to their recent origins. Conversely, the nondeleted haplogroups bear signatures of more ancient origins within the general region. Therefore, while the profiles of the two sets of haplotypes indicate very distinctive origins in different populations with divergent expansion histories, the sequence of their introduction into the Santa Cruz Islands clearly does not follow simply.  相似文献   

14.
Archaeology, linguistics, and existing genetic studies indicate that Oceania was settled by two major waves of migration. The first migration took place approximately 40 thousand years ago and these migrants, Papuans, colonized much of Near Oceania. Approximately 3.5 thousand years ago, a second expansion of Austronesian-speakers arrived in Near Oceania and the descendants of these people spread to the far corners of the Pacific, colonizing Remote Oceania. To assess the female contribution of these two human expansions to modern populations and to investigate the potential impact of other migrations, we obtained 1,331 whole mitochondrial genome sequences from 34 populations spanning both Near and Remote Oceania. Our results quantify the magnitude of the Austronesian expansion and demonstrate the homogenizing effect of this expansion on almost all studied populations. With regards to Papuan influence, autochthonous haplogroups support the hypothesis of a long history in Near Oceania, with some lineages suggesting a time depth of 60 thousand years, and offer insight into historical interpopulation dynamics. Santa Cruz, a population located in Remote Oceania, is an anomaly with extreme frequencies of autochthonous haplogroups of Near Oceanian origin; simulations to investigate whether this might reflect a pre-Austronesian versus Austronesian settlement of the island failed to provide unequivocal support for either scenario.  相似文献   

15.
The island of Bali lies near the center of the southern chain of islands in the Indonesian archipelago, which served as a stepping-stone for early migrations of hunter-gatherers to Melanesia and Australia and for more recent migrations of Austronesian farmers from mainland Southeast Asia to the Pacific. Bali is the only Indonesian island with a population that currently practices the Hindu religion and preserves various other Indian cultural, linguistic, and artistic traditions (Lansing 1983). Here, we examine genetic variation on the Y chromosomes of 551 Balinese men to investigate the relative contributions of Austronesian farmers and pre-Neolithic hunter-gatherers to the contemporary Balinese paternal gene pool and to test the hypothesis of recent paternal gene flow from the Indian subcontinent. Seventy-one Y-chromosome binary polymorphisms (single nucleotide polymorphisms, SNPs) and 10 Y-chromosome-linked short tandem repeats (STRs) were genotyped on a sample of 1,989 Y chromosomes from 20 populations representing Indonesia (including Bali), southern China, Southeast Asia, South Asia, the Near East, and Oceania. SNP genotyping revealed 22 Balinese lineages, 3 of which (O-M95, O-M119, and O-M122) account for nearly 83.7% of Balinese Y chromosomes. Phylogeographic analyses suggest that all three major Y-chromosome haplogroups migrated to Bali with the arrival of Austronesian speakers; however, STR diversity patterns associated with these haplogroups are complex and may be explained by multiple waves of Austronesian expansion to Indonesia by different routes. Approximately 2.2% of contemporary Balinese Y chromosomes (i.e., K-M9*, K-M230, and M lineages) may represent the pre-Neolithic component of the Indonesian paternal gene pool. In contrast, eight other haplogroups (e.g., within H, J, L, and R), making up approximately 12% of the Balinese paternal gene pool, appear to have migrated to Bali from India. These results indicate that the Austronesian expansion had a profound effect on the composition of the Balinese paternal gene pool and that cultural transmission from India to Bali was accompanied by substantial levels of gene flow.  相似文献   

16.
Past studies have shown a consistent association of a specific set of mitochondrial DNA 9 base pair (bp) deletion haplotypes with Polynesians and their Austronesian-speaking relatives, and the total lack of the deletion in a short series of New Guinea Highlanders. Utilizing plasma and DNA samples from various old laboratory collections, we have extended population screening for the 9-bp deletion into "Island Melanesia," an area notorious for its extreme population variation. While the 9-bp deletion is present in all Austronesian, and many non-Austronesian-speaking groups, it is absent in the more remote non-Austronesian populations in Bougainville and New Britain. These results are consistent with the hypothesis that this deletion was first introduced to this region about 3,500 years ago with the arrival of Austronesian-speaking peoples from the west, but has not yet diffused through all populations there. The pattern cannot be reconciled with the competing hypothesis of a primarily indigenous Melanesian origin for the ancestors of the Polynesians. Although selection clearly has operated on some other genetic systems in this region, both migration and random genetic drift primarily account for the remarkable degree of biological diversity in these small Southwest Pacific populations.  相似文献   

17.
Modern humans reached Southeast Asia and Oceania in one of the first dispersals out of Africa. The resulting temporal overlap of modern and archaic humans-and the apparent morphological continuity between them-has led to claims of gene flow between Homo sapiens and H. erectus. Much more recently, an agricultural technology from mainland Asia spread into the region, possibly in association with Austronesian languages. Using detailed genealogical study of Y chromosome variation, we show that the majority of current Austronesian speakers trace their paternal heritage to Pleistocene settlers in the region, as opposed to more-recent agricultural immigrants. A fraction of the paternal heritage, however, appears to be associated with more-recent immigrants from northern populations. We also show that the northern Neolithic component is very unevenly dispersed through the region, with a higher contribution in Southeast Asia and a nearly complete absence in Melanesia. Contrary to claims of gene flow (under regional continuity) between H. erectus and H. sapiens, we found no ancestral Y chromosome lineages in a set of 1,209 samples. The finding excludes the possibility that early hominids contributed significantly to the paternal heritage of the region.  相似文献   

18.
This study utilizes newly developed direct DNA typing methods for human leukocyte antigens (HLA) to provide new information about the peopling of New Guinea. The complete polymorphism of eight Melanesian populations was examined. The groups included were highlanders, northern and southern highlands fringe populations, a Sepik population, northern and southern coastal New Guinea populations, and populations from the Bismarck Archipelago and New Caledonia. The study concluded that, based on HLA and other evidence. Melanesians are likely to have evolved largely from the same ancestral stock as Aboriginal Australians but to have since differentiated. Highlanders are likely to be descendants of earlier migrations who have been isolated for a long period of time. Northern highlands fringe and Sepik populations are likely to share a closer common ancestry but to have differentiated due to long term isolation and the relative proximity to the coast of the Sepik. Southern fringe populations are likely to have a different origin, possibly from the Gulf region, although there may be some admixture with neighboring groups. Coastal populations have a wider range of polymorphisms because of the genetic trail left by later population movement along the coast from Asia that did not reach Australia or remote Oceania. Other polymorphisms found in these populations may have been introduced by the movement of Austronesian-speaking and other more recent groups of people into the Pacific, because they share many polymorphisms with contemporary southeast Asians, Polynesians, and Micronesians that are not found in highlanders or Aboriginal Australians. There is evidence suggestive of later migration to Melanesia from Polynesia and Micronesia.  相似文献   

19.
In the attempt to reconstruct the prehistory of Pacific and Indian Ocean populations, Taiwan's aborigines appear to be of particular interest. Linguistic and archeological evidence indicates that the dispersal of Austronesian speakers throughout the islands of Oceania and Southeast Asia may have originated from Taiwan about 5,000 years ago. The Ami are Taiwan's largest aboriginal group. Here, we report on six polymorphic point mutation loci in Ami individuals and compare allelic frequencies to worldwide populations. In order to examine the genetic characteristics and relationships of the Ami aborigines, we used the allelic frequency data to generate expected heterozygosities, power of discrimination values, maximum likelihood phylogenetic trees, principal component maps, and centroid gene flow plots. These analyses argue for the genetic isolation and uniqueness of the Ami people. Data supportive of limited gene flow and/or small population size, as well as genetic similarities to Native Americans, were observed.  相似文献   

20.
Tigray, the northernmost state of Ethiopia, has a population of 3.5 million, 86% rural, and 56% living in malarious areas. In 1992 a Community-Based Malaria Control Programme was established to provide region-wide and sustained access to early diagnosis and treatment of malaria at the village level. 735 volunteer community health workers (CHWs) serve 2,327 villages with a population of 1.74 million, treating an average of 489,378 patients yearly from 1994 to 1997. Recognition of clinical malaria is similar for CHWs and health staff at clinics where there is no access to microscopy. In 1996 a pilot community-financing scheme of insecticide-treated bednets was well accepted, but re-impregnation rates fell in 1998 because of war-related social upheaval. Indicators from health institutions show a progressive increase in malaria morbidity from 1994 to 1998. Repeated mortality surveys show a 40% reduction in death rates in under-5 children from 1994 to 1996 and a 10% increase from 1996 to 1998. These trends may be related to increased malaria transmission with water resources development, increased seasonal labour migration to malarious lowlands, prolongation of the transmission season with climate changes, and increasing chloroquine resistance throughout Ethiopia. Progressive extension of CHW services to ensure better coverage of women, children, migrant workers and communities near water development projects, change to first-line treatment with sulfadoxine-pyrimethamine, extension of the impregnated bednet initiative, and development of a regional warning system for epidemics should result in a greater impact on morbidity and mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号