首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In humans, mutations in the gene encoding the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) are associated with a spectrum of disease that ranges from hyperuricemia alone to hyperuricemia with profound neurological and behavioral dysfunction. Previous attempts to correlate different types or locations of mutations with different elements of the disease phenotype have been limited by the relatively small numbers of available cases. The current article describes the molecular genetic basis for 75 new cases of HPRT deficiency, reviews 196 previously reported cases, and summarizes four main conclusions that may be derived from the entire database of 271 mutations. First, the mutations associated with human disease appear dispersed throughout the hprt gene, with some sites appearing to represent relative mutational hot spots. Second, genotype-phenotype correlations provide no indication that specific disease features associate with specific mutation locations. Third, cases with less severe clinical manifestations typically have mutations that are predicted to permit some degree of residual enzyme function. Fourth, the nature of the mutation provides only a rough guide for predicting phenotypic severity. Though mutation analysis does not provide precise information for predicting disease severity, it continues to provide a valuable tool for genetic counseling in terms of confirmation of diagnoses, for identifying potential carriers, and for prenatal diagnosis.  相似文献   

2.
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency always causing hyperuricemia presents various degrees of neurological manifestations, the most severe which is Lesch-Nyhan syndrome. The HPRT gene is situated in the region Xq26-q27.2 and consists of 9 exons. At least 300 different mutations at different sites in the HPRT coding region from exon 1 to exon 9 have been identified. A new mutation in the HPRT gene has been determined in one patient with complete deficiency of erythrocyte activity, with hyperuricemia and gout but without Lesch-Nyhan disease. Analysis of cultured fibroblasts revealed minimal residual HPRT activity mainly when guanine was the substrate. Genomic DNA sequencing demonstrated patient's mother heterozygosity for the mutation and no mutation in her brother. The mutation consists in a C-->T transversion at cDNA base 463 (C463T) in exon 6, resulting in proline to serine substitution at codon 155 (P155S). This mutation had not been reported previously and has been designated HPRT(Sardinia). The mutation identified in this patient allows some expression of functional enzyme in nucleated cells such as fibroblasts, indicating that such cell type may add further information to conventional blood analysis. A multicentre survey gathering patients with variant neurological forms could contribute to understand the pathophysiology of the neurobehavioral symptoms of HPRT deficiency.  相似文献   

3.
Summary The Lesch-Nyhan syndrome is a severe X chromosome-linked human disease caused by a virtual absence of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity. A partial deficiency in the activity of this enzyme can result in gouty arthritis. To determine the genetic basis for reduction or loss of enzyme activity, we have amplified and sequenced the coding region of HPRT cDNA from four patients: one with LeschNyhan syndrome (HPRTPerth) and three with partial deficiencies of HPRT activity, which have been designated HPRTUrangan, HPRTSwan and HPRTToowong. In all four patients, the only mutation identified was a single base substitution in exons 2 or 3 of the coding region, which in each case predicts a single amino acid substitution in the translated protein. Each base change was confirmed by allele-specific amplification of the patient's genomic DNA. It is interesting to note that the mutation found for HPRTPerth is identical to that reported for HPRTFlint. It appears that the two mutations are de novo events.  相似文献   

4.
Inherited mutation of hypoxanthine guanine phosphoribosyltransferase, (HPRT) gives rise to Lesch-Nyhan syndrome or HPRT-related gout. We have identified a number of HPRT mutations in patients manifesting different clinical phenotypes, by analyzing all nine exons of the HPRT gene (HPRT1) from genomic DNA and reverse transcribed mRNA using the PCR technique coupled with direct sequencing. Recently, we detected two novel mutations: a single nucleotide substitution (430C > T) resulting in a nonsense mutation Q144X, and a deletion of HPRT1 exon 1 expressing no mRNA of HPRT. Furthermore, we summarized the spectrum of 56 Japanese HPRT mutations.  相似文献   

5.
Summary The mutagenic effect of papovavirus SV 40 on human cells could be demonstrated by reversion of HPRT deficiency in Lesch-Nyhan fibroblasts transformed by the virus. SV 40 seems to induce different gene mutations in individually selected cell clones, as was clearly shown by the respective HPRT enzyme properties. The consequences of our results for use of SV 40-derived vectors in gene substitution experiments are discussed.  相似文献   

6.
Since the early 2000s, the prevalence and spectrum of mutations in genes encoding subunits of succinate dehydrogenase (SDHx) were reported in large cohorts of patients with pheochromocytoma (PC) and paraganglioma (PGL) from most Western countries. Unfortunately, in Belgium, no equivalent work was performed thus far. Therefore, the aim of the work was to look for mutations in SDHx genes and genotype-phenotype correlations in patients with PC and/or PGL from Belgium. Screening of the coding parts of SDHx genes and deletion search were performed in all patients with PC and/or PGL referred to the -Cliniques Universitaires Saint-Luc from 05/2003 to 05/2011. Genetic screening was performed in 59 unrelated head and neck (hn)PGLs (8 fami-lial) and 53 PCs (7 extra-adrenal; 3 metastatic). In hnPGLs, 10 different SDHD mutations (3 substitutions, 5 deletions, 2 splice site mutations) were detected in 16 patients, including 7 familial cases and 9 apparently sporadic cases. In the same subset, we found 8 different SDHB mutations (5 substitutions, 1 splice site mutation, 1 deletion, 1 duplication) in 10 patients with sporadic hnPGL without evidence of malignancy. No SDHx mutation was detected in patients harboring PCs and no SDHC mutation whatsoever. In conclusion, in our multicentric database of PC-PGLs from Belgium, (i) the prevalence of SDHx mutations was high in hnPGLs (44% in the whole subset, 37% of apparently sporadic cases); (ii) in sporadic cases, the prevalence of SDHB mutations was high (20%), similar to that of SDHD (18%); and (iii) no SDHx mutation was found in a subset of mostly adrenal, benign PCs.  相似文献   

7.
Complete hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency causes the Lesch-Nyhan syndrome, an X-linked, purine metabolism disorder manifested by hyperuricemia, hyperuricaciduria, and neurologic dysfunction. Partial HPRT deficiency causes hyperuricemia and gout. One requirement for understanding the molecular basis of HPRT deficiency is the determination of which amino acids in this salvage enzyme are necessary for structural or catalytic competence. In this study we have used the PCR coupled with direct sequencing to determine the nucleotide and subsequent amino acid changes in 22 subjects representing 17 unrelated kindreds from the United Kingdom. These mutations were confirmed by using either RNase mapping or Southern analyses. In addition, experiments were done to determine enzyme activity and electrophoretic mobility, and predictive paradigms were used to study the impact of these amino acid substitutions on secondary structure.  相似文献   

8.
Hypoxanthine phosphoribosyltranferase (HPRT) deficiency is an X-linked disorder of purine salvage that ranges phenotypically from hyperuricaemia to Lesch-Nyhan Syndrome. Molecular testing is necessary to identify female carriers within families as a prelude to prenatal diagnosis. During the period 1999-2010 the Purine Research Laboratory studied 106 patients from 68 different families. Genomic sequencing revealed mutations in 88% of these families, 24 of which were novel. In eight patients, exon sequencing was not informative. Copy-DNA analysis in one patient revealed an insertion derived from a deep intronic sequence with a genomic mutation flanking this region, resulting in the creation of a false exon. Carrier testing was performed in 21 mothers of affected patients, out of these, 81% (17) were found to be carriers of the disease-associated mutation. Our results confirm the extraordinary variety and complexity of mutations in HPRT deficiency. A combination of genomic and cDNA sequencing may be necessary to define mutations.  相似文献   

9.
Approximately 90 different mutations associated with ornithine transcarbamylase (OTC) deficiency are currently known. Thus, the majority represent private mutations. However, some of the mutations seemed to be recurrent. Our laboratories identified apparent deleterious mutations in 78 consecutive families with OTC deficiency by screening all exons and exon/intron borders using single-strand conformational polymorphism (75 families) or sequencing of the entire coding sequence (3 families). Large deletions of one or more exons were found in 8% of families and approximately 10% had small deletions or insertions of 1–5 bases. Splice site mutations were found in 18% of families. Contrary to previous reports, recurrent point mutations seemed to be equally distributed among most CpG dinucleotides rather than show prevalent mutations. No single point mutation had a relative frequency of more than 6.4%. Of the 64 families with nucleotide substitutions, 24 (38%) were G to A with the next most common being C to T (16%) and A to T (11%).  相似文献   

10.
Phosphoglycerate kinase (PGK) catalyzes an important ATP-generating step in glycolysis. PGK1 deficiency is an uncommon X-linked inherited disorder, generally characterized by various combinations of non-spherocytic hemolytic anemia, neurological dysfunctions, and myopathies. Patients rarely exhibit all three clinical features. To provide a molecular framework to the different pathological manifestations, all known mutations were reviewed and 16 mutant enzymes, obtained as recombinant forms, were functionally and structurally characterized. Most mutations heavily affect thermal stability and to a different extent catalytic efficiency, in line with the remarkably low PGK activity clinically observed in the patients. Mutations grossly impairing protein stability, but moderately affecting kinetic properties (p.I47N, p.L89P, p.C316R, p.S320N, and p.A354P) present the most homogeneous correlation with the clinical phenotype. Patients carrying these mutations display hemolytic anemia and neurological disorders, and,except for p.A354P variant, no myopaty. Variants highly perturbed in both catalytic efficiency (p.G158V, p.D164V, p.K191del, D285V, p.D315N, and p.T378P) and heat stability (all, but p.T378P) result to be mainly associated with myopathy alone. Finally, mutations faintly affecting molecular properties (p.R206P, p.E252A, p.I253T, p.V266M, and p.D268N) correlate with a wide spectrum of clinical symptoms. These are the first studies that correlate the clinical symptoms with the molecular properties of the mutant enzymes. All findings indicate that the different clinical manifestations associated with PGK1 deficiency chiefly depend on the distinctive type of perturbations caused by mutations in the PGK1 gene, highlighting the need for determination of the molecular properties of PGK variants to assist in prognosis and genetic counseling. However, the clinical symptoms can not be understood only on the bases of molecular properties of the mutant enzyme. Different (environmental, metabolic, genetic and/or epigenetic) intervening factors can contribute toward the expression of PGK deficient clinical phenotypes.  相似文献   

11.
We have studied 36 patients with HPRT deficiency, 25 with Lesch-Nyhan syndrome and 11 with partial HPRT deficiency (grades 1 to 3). Patients diagnosed with HPRT deficiency have increased 50% since 2000. The most relevant recent advances have been made in molecular diagnosis. Nevertheless, enzyme determinations are still essential for the diagnosis of HPRT deficiency. Therapy for the neurological manifestations of HPRT deficiency has not advanced. Allopurinol remains the drug of choice to diminish uric acid overproduction, but the optimal allopurinol dose must be established in each patient to prevent xanthine or uric acid urolithiasis, a process aided by sequential determination of urinary oxypurines and uric acid.  相似文献   

12.
HPRT mutations in humans: biomarkers for mechanistic studies.   总被引:7,自引:0,他引:7  
The X-chromosomal gene for hypoxanthine-guanine phosphoribosyltransferase (HPRT), first recognized through its human germinal mutations, quickly became a useful target for studies of somatic mutations in vitro and in vivo in humans and animals. In this role, HPRT serves as a simple reporter gene. The in vivo mutational studies have concentrated on peripheral blood lymphocytes, for obvious reasons. In vivo mutations in T cells are now used to monitor humans exposed to environmental mutagens with analyses of molecular mutational spectra serving as adjuncts for determining causation. Studies of the distributions of HPRT mutants among T cell receptor (TCR) gene-defined T cell clones in vivo have revealed an unexpected clonality, suggesting that HPRT mutations may be probes for fundamental cellular and biological processes. Use of HPRT in this way has allowed the analyses of V(D)J recombinase mediated mutations as markers of a mutational process with carcinogenic potential, the use of somatic mutations as surrogate markers for the in vivo T cell proliferation that underlies immunological processes, and the discovery and study of mutator phenotypes in non-malignant T cells. In this last application, the role of HPRT is related to its function, as well as to its utility as a reporter of mutation. Most recently, HPRT is finding use in studies of in vivo selection for in vivo mutations arising in either somatic or germinal cells.  相似文献   

13.
14.
Resistance to various classes of antimicrobial agents has been encountered in many bacteria of medical and veterinary relevance. Particular attention has been paid to zoonotic bacteria such as Salmonella. Over the years, various studies have reported the presence of genes and mutations conferring resistance to antimicrobial agents in Salmonella isolates. This review is intended to provide an update on what is currently known about the genetic basis of antimicrobial resistance in Salmonella.  相似文献   

15.
16.
We utilize T-cell HPRT mutations to monitor exposure to environmental mutagens in siblings of children who have developed cancer at a persistently high rate in Toms River, New Jersey, U.S.A. A preliminary epidemiological study has found a statistically-significant association between drinking public water (by pregnant mother or infant) and subsequent risk for childhood cancer. Three potential sources of mutagenic exposures in Toms River may have increased the rate of carcinogenic initiation significantly in children: 1. Benzidine-based, other azo dye and anthraquinone dye wastes released by Ciba-Geigy, 2. Styrene-acrylonitrile (SAN) trimer and other plastic wastes of Union Carbide, and 3. Radium-224, present in unusually high concentrations in the Cohansey aquifer. Specific patterns of HPRT mutations are utilized to distinguish these various potential sources of carcinogenic exposures in the drinking water of families with childhood cancer and to differentiate chemically or radiologically induced cancers from those which occur spontaneously.  相似文献   

17.
The continuous evolution of mycobacterial taxonomy may represent a source of confusion for laboratories and clinicians. Apart from the obvious pathogenic strains of the Mycobacterium tuberculosis complex, Mycobacterium leprae and Mycobacterium ulcerans, the role of other mycobacteria may be associated with varying conditions ranging from contamination to specific disease processes. Of the more than 120 mycobacterial species recognized currently, very few have not been reported as pathogenic in humans or animals. Although the attempt to keep pace with the steadily increasing number of mycobacterial species seems hopeless, a careful review of the recent literature relevant to the newly described species may be advantageous. The aim of this present update is to provide epidemiological and clinical information along with major phenotypic and genotypic characteristics of the species described in the last 3 years.  相似文献   

18.
19.
The intracellular actions of peptide hormones, growth factors, as well as of extracellular-signaling enzymes and DNA-binding proteins, either within target cells or within their cells of synthesis has been called intracrine action. Although these intracrine moieties are structurally diverse, they share certain characteristics of synthesis and function. This has given rise to the development of a theory of intracrine action which permits testable predictions to be made regarding the functioning of these peptides/proteins. Here the intracrine hypothesis is briefly described and then recent experimental findings which bear on predictions made earlier on the basis of the theory are discussed. These findings provide new support for the intracrine hypothesis.  相似文献   

20.
Molecular alterations were examined in the hypoxanthine guanine phosphoribosyltransferase (hprt) gene of 41 independent X-ray-induced thioguanine-resistant (TGR) Chinese hamster ovary (CHO) cell clones. Rapid screening of the clones by multiplex polymerase chain reaction (PCR) for the presence or absence of exons revealed that the causes of the mutant phenotype were total gene deletion (26/41), partial gene deletion (4/41), and an insertion (1/41). No alterations of exon number or sizes were apparent in 10 of the mutants. Southern blot analysis confirmed the deletion data and revealed an additional class of mutants that had a gene disruption but retained all hprt exons (2/41). Therefore, at least 80% of the ionizing radiation-induced mutations were due to mechanisms involving DNA breakage and rejoining. The distribution of deletion sizes suggests that the two DNA breaks required for a deletion are not independent events. A possible mechanism is presented. In addition, the DNA sequence of the insertion mutation was determined. The insertion (229 bp) is coupled with a deletion (31 bp). An imperfect inverted repeat with flanking hprt DNA was identified and may be involved in the insertion event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号