首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of platelet-derived growth factor (PDGF) to intact BALB/c 3T3 cells results in the rapid (less than 1 min), dose-dependent phosphorylation of a number of proteins that could be isolated by a monoclonal antiphosphotyrosine antibody. The predominant tyrosinephosphorylated protein shared many characteristics with the PDGF receptor, including its molecular weight (170,000), isoelectric point (pI of about 4.2), its binding to DEAE-cellulose, and its pattern of binding to lectins. This 170-kDa protein, labeled with [35S] methionine, was substantially purified from PDGF-stimulated cells using the monoclonal anti-phosphotyrosine antibody but was not significantly immunopurified from unstimulated cells. At 37 degrees C, phosphorylation of the 170-kDa protein was maximal by 5-10 min of exposure to PDGF, and thereafter decreased rapidly. However, at 4 degrees C, the phosphorylation continued to increase after 3 h of exposure to PDGF. Subsequently, shifting the cells from 4 to 37 degrees C resulted in an additional rapid burst of tyrosine phosphorylation. Among the other PDGF-stimulated molecules, the most prominent and consistently observed was a cytosolic, acidic (pI of about 4.2), 74-kDa protein. These findings indicate that the action of PDGF in vivo is associated with the rapid and transient tyrosine phosphorylation of several membrane and cytosolic proteins; the most prominent of these proteins, isolated by monoclonal antibody to phosphotyrosine, is likely to be the PDGF receptor. The use of this antibody provides a new approach for purification of the PDGF receptor.  相似文献   

2.
In order to elucidate late regulatory events which may be involved in the onset of S phase in B lymphocytes, we studied the effect of anti-Ig on phosphorylation of soluble proteins at late G1 phase. Stimulation of murine splenic B lymphocytes with anti-Ig and other mitogens for 18 h was found to be associated with a major increase in phosphorylation of an 85 kDa/pI approximately 5.3 cytosolic protein, conversely, stimulation of the cells with non-mitogenic stimuli did not induce the phosphorylation of pp85. The increase in phosphorylation of pp85 could not be detected after 30 min, was barely detectable after 6 h, but was very prominent after 18 h of stimulation with anti-Ig. Thus, the increase in phosphorylation of pp85 is not an early signal but is rather correlated with the late G1 phase. pp85 could not be detected in the nuclei of either control or stimulated cells. Stimulation of B cells for 30 min with forskolin induced the phosphorylation of pp85, while phorbol ester did not have any effect. The phosphorylation of pp85 was induced by the catalytic subunit of cAMP protein kinase. Comparison of the phosphopeptide map of pp85 phosphorylated by anti-Ig in intact cells to the phosphopeptide map phosphorylated by forskolin or by the catalytic subunit of cAMP protein kinase, showed a striking similarity indicating that cAMP protein kinase may be involved in phosphorylation of pp85 in mitogen-stimulated cells. An increase in intracellular cAMP levels at late G1 phase was found in B cells stimulated by mitogens. These results implicate an important role for cAMP-dependent phosphorylation events, specifically the phosphorylation of pp85/pI 5.3, at late G1 phase during the cell cycle.  相似文献   

3.
Erythropoietin, the prime regulator of red blood cell growth and differentiation, causes rapid changes in the phosphorylation of several integral plasma membrane proteins (Choi, H-S., Wojchowski, D. M., and Sytkowski, A. J. (1987) J. Biol. Chem. 262, 2933-2936; Choi, H-S., Bailey, S. C., Donahue, K. A., Vanasse, G. J., and Sytkowski, A. J. (1990) J. Biol. Chem. 265, 4143-4148). In the present study we have demonstrated that erythropoietin's signal is transduced rapidly to the cytosol resulting in specific phosphorylation/dephosphorylation events. Erythropoietin treatment of Rauscher murine erythroleukemia cells previously labeled with [32P]orthophosphate results in a rapid increase in phosphorylation of two cytosolic proteins, designated pp96 and pp80, and a decrease in phosphorylation of another protein, designated pp90. The relative molecular mass and pI of pp80 are virtually identical to those reported for the protein kinase C substrate p80, or "MARCKS protein." Treatment of the cells with 12-O-tetradecanoylphorbol-13-acetate also increases pp80 but not pp96 phosphorylation, suggesting that erythropoietin triggers a protein kinase C-dependent pathway to pp80 and a protein kinase C-independent pathway to pp96. The effect of erythropoietin on pp96 phosphorylation was also shown in nontransformed erythroid cells isolated from the spleens of phenylhydrazine-treated mice. In contrast, almost no 32P labeling of pp80 or pp90 was detected, and pp80 and pp90 protein were nearly absent from these normal cells. These differences in expression and phosphorylation of erythropoietin-sensitive phosphoproteins may be related to the growth factor independence or dependence of the erythroid cells.  相似文献   

4.
Bovine chromaffin cells normally express mostly nonphosphorylated neurofilaments (NFs) in primary culture, and thus provide a unique model for examining the kinase capable of phosphorylating these proteins in situ. The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) which activates protein kinase C induced NF phosphorylation both in the perikaryon and in neuritic extensions of neurite-bearing cells as judged by immunofluorescence using monoclonal anti-NF antibodies which distinguish between phosphorylated and nonphosphorylated epitopes. NF phosphorylation was suppressed by pretreating the cells with sphingosine, an inhibitor of protein kinase C, and was not observed in the presence of the phorbol ester. 4 alpha-phorbol-12,13-didecanoate (PDD) which does not activate protein kinase C, arguing that protein kinase C was responsible for the observed phosphorylation. Immunochemical analysis of cytoskeletal extracts indicated that TPA induced a 3 to 6-fold increase in NF phosphorylation and showed that the 150,000 dalton NF subunit was the principal protein kinase C substrate. In addition to the TPA effect on NF phosphorylation, TPA provoked a reversible membrane ruffling, which eventually resulted in a flattening of chromaffin cells. These morphological alterations were linked with actin patching and the development of stress fibers, respectively. Sphingosine blocked the TPA-induced membrane ruffling and actin patching, and these phenomena were correlated with increased protein kinase C activity. In contrast, there was no change in the localization of microtubules and NFs. The actin reorganization and NF phosphorylation induced by TPA suggest that at least two distinct proteins of the neuronal cytoskeleton are susceptible to the influence of protein kinase C activation. It remains to be established whether protein kinase C plays a role in the regulatory mechanism controlling actin organization and neurofilament phosphorylation during neuronal differentiation.  相似文献   

5.
Platelet-derived growth factor (PDGF) induces the time and dose dependent serine/threonine phosphorylation of pp64, a nuclear protein in normal rat kidney (NRK) cells. pp64 is phosphorylated additionally on tyrosine in SSV-transformed NRK cells. To further characterize the regulation of phosphorylation of pp64, other mitogens and inhibitors were studied. 12-O-tetradecanoylphorbol-13-acetate (TPA) but not epidermal growth factor (EGF) or insulin induced the phosphorylation of nuclear pp64. Addition of the inhibitor H7 to TPA-treated NRK cells resulted in a striking further increase in phosphorylation of pp64 and, to a lesser extent, in NRK cells treated with PDGF and H7. When cells were treated with PDGF and H7, pp64 was recognized by anti-phosphotyrosine antisera. The increased phosphorylation induced by H7 was inhibited when forskolin was included. This loss of phosphorylation in pp64 with forskolin treatment paralleled a loss of immunoreactivity of pp64 to anti-phosphosphotyrosine. Complex and independent pathways thus appear to signal the growth factor dependent nuclear phosphorylation of pp64, involving phosphorylations both on serine/threonine and on tyrosine.  相似文献   

6.
We have shown previously that the stable overproduction of protein kinase C beta I (cPKC beta I) in rat 6 (R6) embryo fibroblasts results in multiple cellular growth abnormalities. To characterize the pathways through which cPKC beta I acts to exert its effects, we have undertaken a biochemical analysis of the cell line R6-PKC3. The subcellular distribution of cPKC beta I in unstimulated R6-PKC3 cells was approximately 80% cytosolic and approximately 20% membrane bound, and treatment of the cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in translocation and down-regulation of an appreciable fraction of the cPKC beta I enzyme. However, long term TPA treatment was not sufficient to down-regulate all of the overproduced enzyme from both the cytosolic and membrane fractions. Two-dimensional gel analysis of 32P-labeled cellular phosphoproteins from either untreated or TPA-treated cultures revealed only minor qualitative differences between R6-PKC3 cells and a vector control cell line, R6-C1. On the other hand, several quantitative differences in the level of phosphorylation of discrete protein spots were seen. The most prominent phosphoprotein was a previously described 80/87-kDa protein designated MARCKS (myristoylated alanine-rich C kinase substrate). Compared with R6-C1 cells, R6-PKC3 cells exhibited a 2-3-fold increase in the basal level of phosphorylation of MARCKS and after treatment with TPA, displayed a dramatic prolongation in phosphorylation of this protein. Additionally, treatment of R6-PKC3 cells with TPA led to a prolonged increase in both the cytosolic and total cellular level of the MARCKS protein and a pronounced decrease in the level of MARCKS mRNA. Taken together, these results indicate that overproduction of cPKC beta I markedly alters several parameters of the MARCKS protein which may be responsible, at least in part, for the altered phenotype of these cells.  相似文献   

7.
Prosolin is a major cytosolic protein (Mr 18400, isoelectric point 5.9) first reported in HL-60 promyelocytic leukemia cells. It is rapidly phosphorylated (15 to 30 min) in response to TPA treatment as an early event in a sequence that leads to cessation of cell proliferation and to differentiation of promyelocytes into monocytes. In our study we examined the expression of prosolin in human peripheral lymphocytes and investigated the effects of TPA treatment on prosolin phosphorylation and on lymphocyte proliferation. Prosolin was not expressed in resting PBL but was induced after 24 to 36 h of PHA stimulation, simultaneously with induction of DNA synthesis. In rapidly proliferating (IL-2 dependent) PBL prosolin was a major cytosolic component, comprising 0.5% of total cytosolic protein, of which approximately 28% was phosphorylated. Expression of prosolin decreased again when either mitogen-induced or IL-2-dependent proliferation diminished during extended periods in culture. Thus, expression of prosolin is correlated with periods when PBL are cycling through S-phase. TPA treatment of IL-2-dependent PBL at the peak of their growth caused phosphorylation of about two-thirds of preexisting unphosphorylated prosolin within 1 h. This was accompanied by cessation of cell proliferation, as indicated by measurements of TdR incorporation. Although TPA has well known mitogenic effects in lymphocytes during initial activation, this result shows that it exerts an antiproliferative effect in rapidly dividing PBL. It is suggested that increased phosphorylation of prosolin may be an initiating event in the antiproliferative response to TPA, which would occur only in proliferating lymphocytes expressing prosolin.  相似文献   

8.
Abstract: Stimulation of muscarinic receptors by carbachol and activation of protein kinase C elicits the translocation of calmodulin (CaM) from membranes to cytosol in the human neuroblastoma cell line SK-N-SH. Our previous studies have suggested a role for protein kinase C in the regulation of CaM redistribution. To explore further the role of protein kinase C in carbachol-induced calmodulin translocation, we treated cells for 17 h with 12-O-tetradecanoylphorbol 13-acetate (TPA) to down-regulate protein kinase C isozymes or 72 h to differentiate the cells. Treatment of SK-N-SH cells for 17 h with 70 nM TPA nearly abolished the effect of carbachol on CaM redistribution. After 72 h of TPA, however, the cells appeared differentiated, and the ability of carbachol to increase cytosolic CaM levels was restored. In untreated control cells, the carbachol-mediated increase in cytosolic CaM content was mimicked by TPA and blocked by pretreatment with the selective protein kinase C inhibitor Ro 31-8220 at 10 µM. In the 72-h TPA-treated cells, however, the ability of TPA to increase cytosolic CaM levels was significantly reduced, and the action of carbachol was no longer blocked by Ro 31-8220. The effect of prolonged TPA treatment on select protein kinase C isozymes was examined by immunoblotting. Treatment of cells for either 17 or 72 h abolished the α-isozyme in the cytosol and reduced (17 h) or abolished (72 h) the content in the membranes. In both 17- and 72-h TPA-treated cells, the ε-isozyme was nearly abolished in the cytosol and slightly reduced in the membranes. Some protein kinase C activity may have been maintained during TPA treatment because the basal level of phosphorylation of the protein kinase C substrate myristoylated alanine-rich C kinase substrate was enhanced in cells treated for either 17 or 72 h with TPA. The potential dissociation of carbachol and protein kinase C in eliciting increases in cytosolic CaM content was a function of prolonged TPA treatment and not differentiation per se because carbachol-mediated increases in cytosolic CaM levels were inhibited by Ro 31-8220 in retinoic acid-differentiated SK-N-SH cells. This study demonstrates that continuous TPA treatment, although initially down-regulating the protein kinase C-mediated effect of carbachol on CaM redistribution, uncouples carbachol and protein kinase C at longer times.  相似文献   

9.
Investigation of the cellular distribution of a 105 kDa phosphoprotein (pp 105) in transformed mouse fibroblasts, showed that only a minor amount was located on the surface of logarithmically grown suspension cells. More than 90% of total pp 105 was contained in the cytosolic fracion representing about 0.2% of total cytosolic proteins. Surface and cytosolic pp 105 had identical phosphopeptide patterns. Cytosolic pp 105 was highly purified by ammonium sulfate precipitation followed by three chromatographic steps and gel electrophoresis. The purified pp 105 was capable of weak autophosphorylation. In the stationary growth phase of suspension cells, the amount of pp 105 detectable by endogenous phosphorylation was only 10–15% of that observed during logarithmic growth. pp 105 was also detected in normal mouse tissue and its distribution determined.  相似文献   

10.
M Issandou  J M Darbon 《FEBS letters》1991,281(1-2):196-200
The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) is shown to be mitogenic for quiescent glomerular mesangial cells cultured in serum-free conditions. TPA induces DNA synthesis measured by [3H]thymidine incorporation in a dose-dependent manner with an ED50 of 7 ng/ml and an optimal response for 50 ng/ml. The phorbol ester action is potentiated by insulin with an increase of the maximal effect from 232 +/- 15% for TPA alone to 393 +/- 96% for TPA plus insulin. Down-regulation of protein kinase C by prolonged exposure to TPA completely abolishes the mitogenic effect of the phorbol ester. Using a highly resolutive 2D electrophoresis, we have shown that TPA is able to stimulate the phosphorylation of 2 major proteins of Mr 80,000, pl 4.5 (termed 80K) and Mr 28,000, pI 5.7-5.9 (termed 28K). The 80K protein phosphorylation is time- and dose-dependent with an ED50 of 8 ng/ml TPA. Exposure of mesangial cells to heat-shock induces synthesis of a 28K protein among a set of other proteins suggesting that the 28K protein kinase C substrate belongs to the family of low molecular mass stress proteins. Mitogenic concentrations of TPA and phorbol 12,13-dibutyrate inhibit [125 I]epidermal growth factor binding and stimulate the 80K protein phosphorylation with the same order of potency. The inactive tumor-promoter 4 alpha-phorbol was found to be ineffective both on these 2 parameters and on DNA synthesis. These results suggest a positive role for protein kinase C on mesangial cell proliferation and indicate the existence in this cell line of 2 major protein kinase C substrates.  相似文献   

11.
12.
Tumor promoters cause a variety of effects in cultured cells, at least some of which are thought to result from activation of the Ca2+-phospholipid-stimulated protein kinase C. One action of tumor promoters is the modulation of the binding and phosphorylation of the epidermal growth factor (EGF) receptor in A431 cells. To determine if these compounds act on the EGF receptor by substituting for the endogenous activator of C kinase, diacylglycerol, we compared the effects of the potent tumor promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) with those of the synthetic diacylglycerol analog 1-oleyl 2-acetyl diglycerol (OADG). When A431 cells were treated with TPA, the subcellular distribution of C kinase activity shifted from a predominantly cytosolic location to a membrane-associated state; OADG also caused the disappearance of cytosolic C kinase activity. The shift in the subcellular distribution of C kinase, caused by TPA or OADG, correlated with changes in binding and phosphorylation of the EGF receptor. OADG, like TPA, caused loss of binding to an apparent high affinity class of receptors, blocked EGF-induced tyrosine phosphorylation of the EGF receptor, and stimulated phosphorylation of the EGF receptor at both serine and threonine residues. No difference between the phosphopeptide maps of receptors from cells treated with OADG or TPA was observed. Thus, it appears that tumor promoters can exert their effects on the EGF receptors by substituting for diacylglycerol, presumably by activating protein kinase C. Further, these results suggest that endogenously produced diacylglycerol may have a role in normal growth regulatory pathways.  相似文献   

13.
Summary Previously, we have shown that IGF-1, the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) and aurintricarboxylic acid (ATA) protected MCF-7 cells against death induced by the protein synthesis inhibitor cycloheximide (CHX). We proposed that phosphorylation of a putative cellular protein(s) may be involved in this survival mechanism. In the present study we investigated the ability of several agents to induce phosphorylation of cellular proteins and correlated this ability to their survival effect. We found that TPA, ATA, and IGF-1 increased the degree of phosphorylation of a 27-kDa protein in a dose- and time-dependent manner in CHX-treated MCF-7 cells. The ED50 values observed were 25 ng/ml, 40 μg/ml and 15 ng/ml for TPA, ATA, and IGF-1, respectively. The effect was measured upon 10 min of cell treatment with each agent; it reached maximum at 60 min and thereafter decreased continuously to control levels. The 27-kDa protein was found in the cytosolic fraction as a phosphorylated serine residue. Further characterization with two-dimensional electrophoresis indicated that the 27-kDa phosphoprotein was resolved into two isoforms with pI 5.7 and 5.9. Such characteristics were observed for the small molecular weight heat shock protein HSP27. Indeed, a single band of 27 kDa was detected immunologically with rabbit polyclonal anti-human HSP27. The inactive phorbol ester αTPA, epidermal growth factor (EGF), and 8-bromoadenosine 3′5′-cyclic monophosphate (Br-cAMP) did not increase phosphorylation of the 27-kDa protein. Cell survival was measured by exposure of the CHX-pretreated cells to increasing concentrations of the various agents for 60 min, followed by a further incubation for 48 h in the presence of CHX only. TPA, ATA, and IGF-1 were found to enhance cell survival, whereas αTPA, EGF, and Br-cAMP did not. Our results indicate a correlation between phosphorylation of a 27-kDa protein, probably HSP27, and enhanced cell survival, suggesting a role for this phosphoprotein in the survival mechanism.  相似文献   

14.
Z Kiss  E Deli    J F Kuo 《The Biochemical journal》1987,248(3):649-656
Treatment of human promyelocytic leukaemia HL60 cells in conditioned medium with 12-O-tetradecanoylphorbol 13-acetate (TPA) for 4 h resulted in 25-30% inhibition of labelling of phosphatidylserine (PS) with [U-14C]serine. PS labelling was 40% lower, and no inhibitory TPA effect was observed when the experiments were performed in fresh medium. Cycloheximide or puromycin also inhibited PS labelling by 38-44%; their inhibitory effects were non-additive with that of TPA and occurred only in conditioned medium. Catalase (CAT) and superoxide dismutase (SOD), both free-radical scavengers, and H7, a protein kinase C inhibitor, reversed to various extents the inhibitory effect of TPA on PS synthesis. On the other hand, chlorobenzoic acid, a free-radical-generating agent, also inhibited PS synthesis by 22% after 4 h treatment when conditioned medium was used. When ethanolamine was added to cells in conditioned medium to quench PS formation through the exchange of free serine with the ethanolamine moiety of phosphatidylethanolamine (PE), PS labelling was decreased by 33% and the inhibitory TPA effect was significantly decreased. On the other hand, ethanolamine had marginal quenching effect on PS labelling when added to cells in fresh medium. TPA increased the phosphorylation of various proteins in the cells, including protein lb (Mr 80,000; pI 5.5) shown to be localized mainly in the nuclear fraction. Chlorobenzoic acid selectively stimulated the phosphorylation of protein lb, whereas CAT and SOD specifically attenuated the TPA-stimulated phosphorylation of this protein. All these agents affected phosphorylation of protein lb only if conditioned medium was used. The findings suggested that net synthesis of PS through the base-exchange mechanism was stimulated in HL60 cells by cell products present in the conditioned medium. TPA inhibited this stimulated PS synthesis by a mechanism which appeared to involve active oxygen species and protein synthesis and might be related to the phosphorylation of protein lb.  相似文献   

15.
Exposure of MCF-7 human breast cancer cells to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to the inhibition of cell proliferation. We investigate here the short-term effects of TPA on subcellular distribution of protein kinase C, and on protein phosphorylation in cultured MCF-7 cells. We report a rapid and dramatic decrease in cytosolic protein kinase C activity after TPA treatment. Only 30% of the enzymatic activity lost in the cytosol was recovered in the particulate fraction. These data suggest that subcellular translocation of protein kinase C is accompanied by a rapid down-regulation of the enzyme (70%). Furthermore, TPA and other protein kinase C activators rapidly induce the phosphorylation of a 28 kDa protein in intact MCF-7 cells. Phorbol esters devoid of tumor-promoting activity are ineffective both for inducing these early biochemical events and for inhibiting cell proliferation.  相似文献   

16.
Interleukin 2 production by activated Jurkat T cells is markedly decreased by prostaglandin E2 (PGE2). The target of PGE2 action has been investigated in the present study. Among the biochemical events occurring after CD3.TCR triggering by anti-CD3 monoclonal antibody, phosphorylation of two cytosolic proteins, pp21 and pp23, was strongly inhibited by PGE2, forskolin, and 8-bromo-cAMP, whereas anti-CD3 monoclonal antibody-induced CD3.TCR modulation and Ca2+ influx were not affected. The inhibition of both pp21 and pp23 phosphorylation and interleukin 2 synthesis by PGE2 can be largely reversed by the cAMP-dependent protein kinase inhibitor, N-[2-(methylamino)-ethyl-1]-5-isoquinoline sulfonamide. Together with the demonstration of a cAMP-dependent protein kinase activity in Jurkat T cells, these results are consistent with the participation of the cAMP-dependent protein kinase mediating the inhibitory action of PGE2, probably through the inhibition of pp21 and pp23 phosphorylation. Thus, it appears that the modulation of the phosphorylation of these cytosolic proteins represents an essential step in the regulation of T lymphocyte activation.  相似文献   

17.
Phosphorylated p40PHOX as a negative regulator of NADPH oxidase   总被引:5,自引:0,他引:5  
The leukocyte NADPH oxidase catalyzes the production of O(2)(-) from oxygen at the expense of NADPH. Activation of the enzyme requires interaction of the cytosolic factors p47(PHOX), p67(PHOX), and Rac2 with the membrane-associated cytochrome b(558). Activation of the oxidase in a semirecombinant cell-free system in the absence of an amphiphilic activator can be achieved by phosphorylation of the cytosolic factor p47(PHOX) by protein kinase C. Another cytosolic factor, p40(PHOX), was recently shown to be phosphorylated on serine and threonine residues upon activation of NADPH oxidase, but both stimulatory and inhibitory roles were reported. In the present study, we demonstrate that the addition of phosphorylated p40(PHOX) to the cell-free system inhibits NADPH oxidase activated by protein kinase C-phosphorylated p47(PHOX), an effect not observed with the unphosphorylated p40(PHOX). Moreover phosphorylated p40(PHOX) inhibits the oxidase if added before or after full activation of the enzyme. Direct mutagenesis of protein kinase C consensus sites enables us to conclude that phosphorylation of threonine 154 is required for the inhibitory effect of p40(PHOX) to occur. Although the phosphorylated mutants and nonphosphorylated mutants are still able to interact with both p47(PHOX) and p67(PHOX) in pull-down assays, their proteolysis pattern upon thrombin treatment suggests a difference in conformation between the phosphorylated and nonphosphorylated mutants. We postulate that phosphorylation of p40(PHOX) on threonine 154 leads to an inhibitory conformation that shifts the balance toward an inhibitory role and blocks oxidase activation.  相似文献   

18.
GTPase-activating protein (GAP) is a cytosolic protein that stimulates the rate of hydrolysis of GTP (GTP to GDP) bound to normal p21ras, but does not catalyze the hydrolysis of GTP bound to oncogenic, activated forms of the ras protein. Transformation of cells with v-src or activated transforming variants of c-src or stimulation of cells with epidermal growth factor resulted in the stable association of GAP with two tyrosine-phosphorylated cellular proteins of 64 kDa (p64) and 190 kDa (p190). Analysis of GAP immune complexes isolated from extracts of metabolically labeled src-transformed cells and epidermal growth factor-stimulated cells indicated that tyrosine phosphorylation of p64 and p190 appeared to be coincident with the stable association of these proteins with GAP. Quantitation of the amount of p64 associated with GAP in v-src-transformed cells, however, indicated that only 15 to 25% of tyrosine-phosphorylated p64 was found in complex with GAP. Mutations within the SH2 region of pp60src that render activated pp60src defective for transformation inhibited the efficient formation of complexes between GAP and the tyrosine-phosphorylated forms of p64 and p190. From these data, we suggest that tyrosine phosphorylation and stable association of p64 with GAP is an important step in mediating cellular signaling through the p21ras-GAP pathway.  相似文献   

19.
We have investigated rapid and marked phosphorylation of cellular proteins induced by interleukin 2 (IL-2) in both phytohaemagglutinin-stimulated normal peripheral blood leucocytes, and IL-2-dependent or -independent human T-cell lines bearing human T-cell leukaemia (lymphotropic) virus type I. Two-dimensional electrophoretic analysis showed that the IL-2-induced phosphoprotein was of Mr 67,000 with a pI of 5.8 (pp67) and was distinct from the IL-2 receptor. IL-2 also stimulated phosphorylation of four other proteins, with an Mr of 63,000 and pI values 5.3-6.1 (pp63s). The stimulation of pp67 phosphorylation was observed within 5 min after addition of IL-2 and was maximal after 15 min. The maximal phosphorylation was more than 10-fold that observed initially. In IL-2-dependent cells, IL-2 dose responses of pp67 phosphorylation and cell proliferation were exactly correlated. Phosphoamino acid analysis showed that the phosphorylation site of pp67 and pp63s was a serine residue. Subcellular-fractionation studies indicated that pp67 was localized in cytosol, whereas pp63s phosphorylation was induced by IL-2 in nuclear and cytosol fractions. Similar phosphorylation of pp67 and pp63s was observed when the cells were treated with phorbol 12-myristate 13-acetate instead of IL-2. These results suggest that IL-2-IL-2-receptor interaction leads to activation of protein kinase(s), resulting in phosphorylation of certain cellular proteins such as pp67 and pp63s, and that this phosphorylation could be an early event in the transmission of intracellular growth signalling from the IL-2 receptors.  相似文献   

20.
Long-term treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) down-regulates select protein kinase C (PKC) isozymes and may differentially affect PKC substrates. We investigated the role of PKC down-regulation on phosphorylation of two PKC substrates, the 43 kDa growth-associated protein (GAP-43) and the myristoylated alanine-rich C-kinase substrate (MARCKS) in SK-N-SH human neuroblastoma cells. Cells were treated with 70 nM TPA for 15 min, 17 or 72 h. Phosphorylation of MARCKS and GAP-43 was elevated throughout 72 h of TPA. The magnitude and peptidic sites of phosphorylation in GAP-43 and MARCKS were similar after all TPA treatments. GAP-43, but not MARCKS, content was increased after 17 and 72 h of TPA. The ratio of GAP-43 phosphorylation to content was elevated throughout 17 h but returned to control by 72 h as content increased. PKC epsilon and alpha isozyme content was greatly reduced after 72 h of TPA but membranes retained 23% of PKC activity. Only PKC epsilon translocated to membranes after 15 min TPA. GAP-43 content after 72 h of TPA was increased in subcellular fractions in which significant PKC epsilon isozyme concentration remained. These results demonstrate that continuous TPA differentially affected phosphorylation of PKC substrate proteins and regulation of PKC isozyme content in SK-N-SH cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号