首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 μM. Among the compounds, 7q (a novel CFTR potentiator, CP7q) showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis.  相似文献   

2.
Channel activators (potentiators) of cystic fibrosis (CF) transmembrane conductance regulator (CFTR), can be used for the treatment of the small subset of CF patients that carry plasma membrane-resident CFTR mutants. However, approximately 90% of CF patients carry the misfolded ΔF508-CFTR and are poorly responsive to potentiators, because ΔF508-CFTR is intrinsically unstable at the plasma membrane (PM) even if rescued by pharmacological correctors. We have demonstrated that human and mouse CF airways are autophagy deficient due to functional sequestration of BECN1 and that the tissue transglutaminase-2 inhibitor, cystamine, or antioxidants restore BECN1-dependent autophagy and reduce SQSTM1/p62 levels, thus favoring ΔF508-CFTR trafficking to the epithelial surface. Here, we investigated whether these treatments could facilitate the beneficial action of potentiators on ΔF508-CFTR homozygous airways. Cystamine or the superoxide dismutase (SOD)/catalase-mimetic EUK-134 stabilized ΔF508-CFTR at the plasma membrane of airway epithelial cells and sustained the expression of CFTR at the epithelial surface well beyond drug withdrawal, overexpressing BECN1 and depleting SQSTM1. This facilitates the beneficial action of potentiators in controlling inflammation in ex vivo ΔF508-CFTR homozygous human nasal biopsies and in vivo in mouse ΔF508-CFTR lungs. Direct depletion of Sqstm1 by shRNAs in vivo in ΔF508-CFTR mice synergized with potentiators in sustaining surface CFTR expression and suppressing inflammation. Cystamine pre-treatment restored ΔF508-CFTR response to the CFTR potentiators genistein, Vrx-532 or Vrx-770 in freshly isolated brushed nasal epithelial cells from ΔF508-CFTR homozygous patients. These findings delineate a novel therapeutic strategy for the treatment of CF patients with the ΔF508-CFTR mutation in which patients are first treated with cystamine and subsequently pulsed with CFTR potentiators.  相似文献   

3.
CFTR is a cAMP-activated chloride channel responsible for agonist stimulated chloride and fluid transport across epithelial surfaces.1 Mutations in the CFTR gene lead to cystic fibrosis (CF) which affects the function of secretory organs like the intestine, the pancreas, the airways and the sweat glands. Most of the morbidity and mortality in CF has been linked to a decrease in airway function.2 The ΔF508 mutation is the most common CF-related mutation in the Caucasian population and represents 90% of CF alleles. Homozygote carriers of this mutation present with a severe CF phenotype.3 The ΔF508 mutation causes misfolding of the nascent CFTR polypeptide, which leads to inefficient export from the endoplasmic reticulum (ER) and rapid degradation by the proteasome.4Key words: cystic fibrosis, endoplasmic reticulum, oligomer, processing mutation, curcuminGiven the frequency of the ΔF508 processing mutation and the severity of its corresponding phenotype, much research has focused on identifying compounds that restore the trafficking and function of this mutant at the plasma membrane. Several synthetic ‘correctors’ of ΔF508 mis-processing and ‘potentiators’ of mutant channel activity have been identified.5,6 Natural compounds such as curcumin also have generated interest. Curcumin is an organic phenolic compound abundant in turmeric, an Indian spice extracted from the rhizome of Curcuma longa.7 Earlier studies performed using ΔF508/ΔF508 mouse models and human airway epithelial cell lines suggested that curcumin may act as a ΔF508-CFTR trafficking corrector.8 Also, we and others showed that curcumin stimulates CFTR channel activity in excised membrane patches.9,10 This stimulation occurs in the absence of ATP binding, which is normally required for channel opening.10 Binding sites of correctors and potentiators within the CFTR polypeptide as well as the molecular mechanisms underlying the rescue of CFTR trafficking and function remain to be elucidated. In our attempt to understand how curcumin could circumvent the normally critical step of ATP binding to promote CFTR channel activity we investigated the effect of curcumin on CFTR conformation by using biochemical assays. We showed that curcumin caused dimerization of several CFTR channel constructs (including ΔF508-CFTR) in a dose- and time-dependent manner both in microsomes and within intact cells. This effect of curcumin on CFTR oligomerization is attributable to its reactive β-diketone groups, which may undergo an oxidation reaction with CFTR nucleophilic amino acid residues.11 Importantly, CFTR channel activation by curcumin is unrelated to its cross-linking effect. We identified cyclic derivatives of curcumin that lack this cross-linking activity but still promote CFTR channel function.11Here we examined the possibility that the cross-linking of ΔF508-CFTR channels by curcumin promotes the delivery of this ER processing mutant to the cell surface. We were motivated to test this possibility for three reasons: (i) our previous evidence that curcumin-induced dimers of wild-type CFTR polypeptides were detected at the cell surface where they remained over an hour after the removal of curcumin;11 (ii) the very efficient cross-linking of the immature (ER) forms of wild-type CFTR and the ΔF508-CFTR mutant that we observed earlier11 and (iii) prior evidence from our group that the ER export and cell surface delivery of ΔF508-CFTR polypeptides could be promoted by the co-expression of this mutant with certain CFTR fragments (trans-complementation).12 The latter result might be due to the existence of ER retention ‘signals’ that are exposed on the ΔF508-CFTR polypeptide but become buried by interacting (complementing) fragments.Figure 1 provides evidence that ΔF508-CFTR oligomers that form in response to curcumin treatment do indeed appear at the surfaces of cultured airway epithelial cells (CF bronchial epithelial (CFBE) cells stably transfected with this CFTR mutant). Surface biotinylation assays were performed to detect the appearance of ΔF508-CFTR polypeptides at the cell surface. MESNA, a cell impermeant reducing agent that cleaves the biotin label, was used to verify the surface accessibility of the labeled ΔF508-CFTR polypeptides. ΔF508-CFTR polypeptides were precipititated with streptavidinagarose (surface pool) or with a CFTR monoclonal antibody (total pool). In the absence of curcumin treatment the great majority of the ΔF508-CFTR protein existed as the ER form (monomeric band B), as previously observed by many investigators (Fig. 1, lane 5). No band B was detected in the surface pool before or after curcumin treatment (Fig. 1, lanes 1, 2). As we reported earlier, treatment of the cells with 50 µM curcumin for 15 mins at 37°C cross-linked nearly all of the ΔF508-CFTR polypeptides into higher order complexes (e.g., dimers, termed band D here; lanes 6–8 in Fig. 1). Interestingly, these higher order forms of ΔF508-CFTR were readily apparent in the surface pool (Fig. 1, lane 2).Open in a separate windowFigure 1ΔF508-CFTR oligomers detected at the surfaces of airway epithelial cells after curcumin treatment. ΔF508-CFTR expressing CFBE cells were treated with curcumin (50 µM) for 15 min at 37°C. Cell surface proteins were then biotinylated (Sulfo-NHS-SS-Biotin, 1 mg/ml) for 30 min at 4°C followed by cell lysis with 1% Triton X-100. Surface proteins were isolated by streptavidin pulldown and ΔF508-CFTR was isolated from the total cell protein pool by immunoprecipitation with an anti-CFTR C-terminus antibody (clone 24-1, R&D systems). After SDS-PAGE the ΔF508-CFTR signal was detected by immunoblotting using the 24-1 antibody described above. (SP: streptavidin pulldown; IP: immunoprecipitation). As an additional control curcumin-treated cells were treated with the cell impermeant MESNA after biotinylation to strip the biotin off the cell surface proteins with which it had reacted.CFTR oligomers also can be generated by standard chemical cross-linkers such as DSS, as previously reported by others and confirmed by us.13 Figure 2 shows that oligomers of ΔF508-CFTR that are induced by DSS treatment also appear in the surface pool. These experiments were performed using transiently transfected HEK-293T cells with 30 µM curcumin as a positive control. Quantitative densitometry results are shown in Figure 3. By titrating the DSS concentration we observed a dose-dependent disappearance of the monomeric band B form, a corresponding increase in the band D (dimer) pool and the appearance of higher order oligomers (band E) which prevailed at higher DSS concentrations (see total cell pool data in right-hand). A small amount of the band D form was detected in the absence of DSS or curcumin treatment, which might represent some spontaneous cross-linking of ΔF508-CFTR polypeptides under these conditions. The DSS and curcumin-induced ΔF508-CFTR oligomers were readily detected in the surface pool. The densitometry analysis revealed that 20 ± 5% and 33 ± 19% of the total oligomer pool (combined bands D and E) was found in the surface pool after treatment with 0.1 mM DSS (n = 3) or 30 µM curcumin (n = 3), respectively, which corresponded to a 17 ± 7 and 26 ± 20 fold increase compared to the control condition (i.e., no DSS or no curcumin).Open in a separate windowFigure 2ΔF508-CFTR oligomers detected at the surfaces of HEK cells after DSS or curcumin treatment. ΔF508-CFTR expressing HEK cells were treated with the indicated concentrations of DSS or with 30 µM curcumin (*) for 15 min at 37°C. Cell surface proteins were then biotinylated and isolated by streptavidin pulldown as described above. ΔF508-CFTR was immunoprecipitated from the total cell protein pool with the 24-1 antibody and detected by immunoblotting as before (SP: streptavidin pulldown; IP: immunoprecipitation). Band B corresponds to ΔF508 monomer (ER form). Band D corresponds to ΔF508 dimer. Band E corresponds to a higher degree of ΔF508 oligomerization. Each panel corresponds to a different exposure of the same blot.Open in a separate windowFigure 3Dose-dependent expression of ΔF508-CFTR oligomers at the surfaces of HEK cells after DSS treatment. CFTR signals detected by the 24-1 antibody from three different experiments as the one described in Figure 2 were analyzed using the ImageJ software (from the National Institute of Health). (A) band B signal intensity is plotted as a function of the DSS concentrations. Signals analyzed correspond to ΔF508-CFTR band B immunoprecipitated by the 24-1 antibody. (B) band D plus band E signal intensities are plotted as a function of the DSS concentration. Signals analyzed correspond to the sum of ΔF508-CFTR band D and band E immunoprecipitated by the 24-1 antibody. (C) band D plus band E signal intensities at the cell surface are plotted as a function of the DSS concentration. Signals analyzed correspond to the sum of ΔF508-CFTR band D and band E isolated from the surfaces of ΔF508-CFTR expressing HEK cells by biotinylation and streptavidin pulldown. (D) the ratio between the amount of band E and D at the surfaces of ΔF508-CFTR expressing HEK cells is plotted as a function of the DSS concentration. Error bars are SEMs.Altogether these data indicate that the cross-linking of ΔF508-CFTR band B into oligomers by curcumin or DSS allows ΔF508-CFTR to traffic to the cell surface. This effect might be caused by the burial of ER retention motifs within the oligomer, which also could explain our previous trans-complementation results in which we observed that certain CFTR fragments promote the cell surface delivery of this processing mutant.12 Although non-specific protein cross-linkers like DSS would not be therapeutically beneficial, more specific CFTR cross-linkers (perhaps curcumin?) may be worth considering for treating CF disease linked to ER processing mutations in CFTR. In this regard, we note that cross-linked CFTR polypeptides appear to retain chloride channel activity. Namely, in our prior excised patch clamp studies we observed stable CFTR channel activity when these patches were exposed to curcumin at doses and times that promote robust cross-linking of CFTR polypeptides.10,11  相似文献   

4.
In cultured bovine adrenal chromaffin cells expressing Nav1.7 sodium channel isoform, veratridine increased Ser473-phosphorylation of Akt and Ser9-phosphorylation of glycogen synthase kinase-3β by 217 and 195%, while decreasing Ser396-phosphorylation of tau by 36% in a concentration (EC50 = 2.1 μM)- and time (t1/2 = 2.7 min)-dependent manner. These effects of veratridine were abolished by tetrodotoxin or extracellular Ca2+ removal. Veratridine (10 μM for 5 min) increased translocation of Ca2+-dependent conventional protein kinase C-α from cytoplasm to membranes by 47%; it was abolished by tetrodotoxin, extracellular Ca2+ removal, or Gö6976 (an inhibitor of protein kinase C-α), and partially attenuated by LY294002 (an inhibitor of phosphatidylinositol 3-kinase). LY294002 (but not Gö6976) abrogated veratridine-induced Akt phosphorylation. In contrast, either LY294002 or Gö6976 alone attenuated veratridine-induced glycogen synthase kinase-3β phosphorylation by 65 or 42%; however, LY294002 plus Gö6976 completely blocked it. Veratridine (10 μM for 5 min)-induced decrease of tau phosphorylation was partially attenuated by LY294002 or Gö6976, but completely blocked by LY294002 plus Gö6976; okadaic acid or cyclosporin A (inhibitors of protein phosphatases 1, 2A, and 2B) failed to alter tau phosphorylation. These results suggest that Na+ influx via Nav1.7 sodium channel and the subsequent Ca2+ influx via voltage-dependent calcium channel activated (1) Ca2+/protein kinase C-α pathway, as well as (2) Ca2+/phosphatidylinositol 3-kinase/Akt and (3) Ca2+/phosphatidylinositol 3-kinase/protein kinase C-α pathways; these parallel pathways converged on inhibitory phosphorylation of glycogen synthase kinase-3β, decreasing tau phosphorylation.  相似文献   

5.
We reconstructed the history of terrestrial export of aluminium (Al) to Plešné Lake (Czech Republic) since the lake origin 12,600 year BC, and predicted Al export for 2010–2050 on the basis of previously published and new data on mass budget studies, palaeolimnological data, and MAGIC modelling. We focused on three major Al forms; ionic Al (Ali), organically-bound Al (Alo), and particulate Al hydroxide [Al(OH)3]. In early post-glacial time, Plešné Lake received high terrestrial export of Al, but with a minor proportion of Al(OH)3 (4–25 μM), and concentrations of Ali and Alo were negligible. Since the forest and soil development (9900–9000 year BC), erosion has declined and soil organic acids increased export of Alo from soils. The terrestrial Alo leaching (7.5 μM) persisted throughout the Holocene until the industrial period. Then, Ali concentrations continuously increased (up to 28 μM in the mid-1980s) due to atmospheric acidification; the Ali leaching was mostly associated with sulphate. The proportion of Ali associated with nitrate has been increasing since the beginning of lake recovery from acidification after 1990 due to reduction in sulphur deposition and nitrogen-saturation of the catchment, leading to persistent nitrate leaching. Currently, nitrate has become the dominant strong acid anion and the major Ali carrier. Alo (5.5 μM) is predicted to dominate Al concentrations around 2050, but the predicted Ali concentrations (4 μM) are uncertain because of uncertainty associated with the future nitrate leaching and its effect on soils.  相似文献   

6.
Recent studieshave demonstrated that several compounds with diverse structures canactivate wild-type cystic fibrosis transmembrane conductance regulator(CFTR) by non-receptor-mediated mechanisms. Some of these compoundshave been shown to enhance cAMP-dependent activation of F508-CFTR.This study was undertaken to compare the mechanisms by which genistein,IBMX, milrinone, 8-cyclopentyl-1,3-dipropylxanthine (CPX), thebenzimidazolone NS004, and calyculin A increase CFTR activity. Ourstudies demonstrate that, in transfected NIH-3T3 cells, maximalenhancements of forskolin-dependent F508-CFTR activity are greatestwith genistein, IBMX, and NS004. Milrinone, genistein, CPX, NS004, andcalyculin A do not increase cellular cAMP. Because forskolin andcalyculin A increase in vivo phosphorylation of cAMP binding responseelement (CREB), the inability of milrinone, genistein, CPX, and NS004to increase CREB phosphorylation suggests that they do not stimulateprotein kinase A or inhibit phosphatase activity. Our data suggest thatthe mechanisms by which genistein and NS004 activate CFTR differ. Wealso demonstrate that, in NIH-3T3 cells, IBMX-dependent enhancement ofcAMP-dependent CFTR activity is not due to an increase in cellular cAMPand may involve a mechanism like that of genistein.

  相似文献   

7.
Objectives: To provide a simple method to make a stable ΔF508-CFTR-expressing T84 cell line that can be used as an efficient screening model system for ΔF508-CFTR rescue. Results: CFTR knockout cell lines were generated by Cas9 with a single-guide RNA (sgRNA) targeting exon 1 of the CFTR genome, which produced indels that abolished CFTR protein expressions. Next, stable ΔF508-CFTR expression was achieved by genome integration of ΔF508-CFTR via the lentivirus infection system. Finally, we showed functional rescue of ΔF508-CFTR not only by growing the cells at a low temperature, but also incubating with VX-809, a ΔF508-CFTR corrector, in the established T84 cells expressing ΔF508-CFTR. Conclusions: This cell system provides an appropriate screening platform for rescue of ΔF508-CFTR, especially related to protein folding, escaped from endoplasmic-reticulum-associated protein degradation, and membrane transport.  相似文献   

8.

Background

Gene mutations that produce misprocessed proteins are linked to many human disorders. Interestingly, some misprocessed proteins retained their biological function when stabilized by low temperature treatment of cultured cells in vitro. Here we investigate whether low temperature treatment in vivo can rescue misfolded proteins by applying 5’-AMP mediated whole body cooling to a Cystic Fibrosis (CF) mouse model carrying a mutant cystic fibrosis transmembrane conductance regulator (CFTR) with a deletion of the phenylalanine residue in position 508 (ΔF508-CFTR). Low temperature treatment of cultured cells was previously shown to be able to alleviate the processing defect of ΔF508-CFTR, enhancing its plasma membrane localization and its function in mediating chloride ion transport.

Results

Here, we report that whole body cooling enhanced the retention of ΔF508-CFTR in intestinal epithelial cells. Functional analysis based on β-adrenergic dependent salivary secretion and post-natal mortality rate revealed a moderate but significant improvement in treated compared with untreated CF mice.

Conclusions

Our findings demonstrate that temperature sensitive processing of mutant proteins can be responsive to low temperature treatment in vivo.  相似文献   

9.
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the Cystic fibrosis transmembrane conductance regulator (CFTR). ΔF508-CFTR, the most common disease-causing CF mutant, exhibits folding and trafficking defects and is retained in the endoplasmic reticulum, where it is targeted for proteasomal degradation. To identify signaling pathways involved in ΔF508-CFTR rescue, we screened a library of endoribonuclease-prepared short interfering RNAs (esiRNAs) that target ∼750 different kinases and associated signaling proteins. We identified 20 novel suppressors of ΔF508-CFTR maturation, including the FGFR1. These were subsequently validated by measuring channel activity by the YFP halide-sensitive assay following shRNA-mediated knockdown, immunoblotting for the mature (band C) ΔF508-CFTR and measuring the amount of surface ΔF508-CFTR by ELISA. The role of FGFR signaling on ΔF508-CFTR trafficking was further elucidated by knocking down FGFRs and their downstream signaling proteins: Erk1/2, Akt, PLCγ-1, and FRS2. Interestingly, inhibition of FGFR1 with SU5402 administered to intestinal organoids (mini-guts) generated from the ileum of ΔF508-CFTR homozygous mice resulted in a robust ΔF508-CFTR rescue. Moreover, combination of SU5402 and VX-809 treatments in cells led to an additive enhancement of ΔF508-CFTR rescue, suggesting these compounds operate by different mechanisms. Chaperone array analysis on human bronchial epithelial cells harvested from ΔF508/ΔF508-CFTR transplant patients treated with SU5402 identified altered expression of several chaperones, an effect validated by their overexpression or knockdown experiments. We propose that FGFR signaling regulates specific chaperones that control ΔF508-CFTR maturation, and suggest that FGFRs may serve as important targets for therapeutic intervention for the treatment of CF.Cystic fibrosis (CF)1 is a pleiotropic disease caused by an abnormal ion transport in the secretory epithelia lining the tubular organs of the body such as lungs, intestines, pancreas, liver, and male reproductive tract. In the airways of CF patients, reduced Cl and bicarbonate secretion caused by lack of functional Cystic fibrosis transmembrane conductance regulator (CFTR) on the apical surface, and hyper-absorption of Na+ because of elevated activity of ENaC (1), lead to a dehydration of the airway surface liquid (ASL). This reduces the viscosity of the mucus layer and the deposited layer of thickened mucus creates an environment that promotes bacterial colonization, which eventually leads to chronic infection of the lungs and death (2, 3).CFTR is a transmembrane protein that functions as a cAMP-regulated, ATP-dependent Cl channel that also allows passage of bicarbonate through its pore (4, 5). It also possesses ATPase activity important for Cl conductance (6, 7). The CFTR structure is predicted to consist of five domains: two membrane spanning domains (MSD1, MSD2), each composed of six putative transmembrane helices, two nucleotide binding domains (NBD1, NBD2), and a unique regulatory (R) region (8).More than 1900 CFTR mutations have been identified to date (www.genet.sickkids.on.ca/cftr). The most common mutation is a deletion of phenylalanine at position 508 (ΔF508 or ΔF508-CFTR) in NBD1 (9). The ΔF508 mutation causes severe defects in the processing and function of CFTR. The protein exhibits impaired trafficking from the endoplasmic reticulum (ER) to the plasma membrane (PM), impaired intramolecular interactions between NBD1 and the transmembrane domain, and cell surface instability (1015). Nevertheless, the ΔF508 defect can be corrected, because treating cells expressing ΔF508-CFTR with low temperature or chemical chaperones (e.g. glycerol) can restore some surface expression of the mutant (11, 16).Numerous small molecules that can at least partially correct (or potentiate) the ΔF508-CFTR defect have been identified to date (1727), and some were already tested in clinical trials (e.g. sildenafil, VX-809/Lumacaftor), or have made it to the clinic (VX-770/Kalydeco/Ivacaftor) (http://www.cff.org/research/DrugDevelopmentPipeline/). However, the need to identify new ΔF508-CFTR correctors remains immense as the most promising corrector, VX-809, has proven ineffective in alleviating lung disease of CF patients when administered alone (27). Thus, our group developed a high-content technology aimed at identifying proteins and small molecules that correct the trafficking and functional defects of ΔF508-CFTR (28). We successfully used this approach to carry out three separate high-content screens: a protein overexpression screen (28), a small-molecule kinase inhibitor screen (29) and a kinome RNA interference (RNAi) screen, described here.  相似文献   

10.
The PDZ domain–containing protein CAL mediates lysosomal trafficking and degradation of CFTR. Here we demonstrate the involvement of a CAL-binding SNARE protein syntaxin 6 (STX6) in this process. Overexpression of STX6, which colocalizes and coimmunoprecipitates with CAL, dramatically reduces the steady-state level and stability of CFTR. Conversely, overexpression of a STX6 dominant-negative mutant increases CFTR. Silencing endogenous STX6 increases CFTR but has no effect on ΔTRL-CFTR, which cannot bind to CAL. Silencing CAL eliminates the effect of STX6 on CFTR. Both results suggest a dependence of CAL on STX6 function. Consistent with its Golgi localization, STX6 does not bind to ER-localized ΔF508-CFTR. Silencing STX6 has no effect on ΔF508-CFTR expression. However, overexpression of STX6 coimmunoprecipitates with and reduces temperature-rescued ΔF508-CFTR that escapes ER degradation. Conversely, silencing STX6 enhances the effect of low temperature in rescuing ΔF508-CFTR. Finally, in human bronchial epithelial cells, silencing endogenous STX6 leads to increases in protein levels and Cl currents of both wild-type and temperature-rescued CFTR. We have identified STX6 as a new component of the CAL complex that regulates the abundance and function of CFTR at the post-ER level. Our results suggest a therapeutic role of STX6 in enhancing rescued ΔF508-CFTR.  相似文献   

11.
PXR, pregnane X receptor, in its activated state, is a validated target for controlling certain drug–drug interactions in humans. In this context, there is a paucity of inhibitors directed toward activated PXR. Using prior observations with ketoconazole as a PXR inhibitor, the target compound 3 was synthesized from (s)-glycidol with overall 56% yield. (+)-Glycidol was reacted with 4-bromophenol and potassium carbonate in DMF to yield the ring opened compound 6. This was then heated to reflux in benzene along with 2′, 4′-difluoroacetophenone and catalytic amount of para-toluene sulfonic acid to yield 8. The resultant acetal 8 was then functionalized using Palladium chemistry to yield the target compound 3. The activity of the compound was compared with ketoconazole and UCL2158H. However, in contrast with ketoconazole (IC50  0.020 μM; 100% inhibition), 3 has negligible effects on inhibition of microsomal CYP450 (maximum 20% inhibition) at concentrations >40 μM. In vitro, micromolar concentration of ketoconazole is toxic to passaged human cell lines, while 3 does not exhibit cytotoxicity up to concentrations 100 μM (viability >85%). This is the first demonstration of a chemical analog of a PXR inhibitor that retains activity against activated PXR. Furthermore, in contrast with ketoconazole, 3 is less toxic in human cell lines and has negligible CYP450 activity.  相似文献   

12.
One and a half year-old Ginkgo saplings were grown for 2 years in 7 litre pots with medium fertile soil at ambient air CO2 concentration and at 700 μmol mol−1 CO2 in temperature and humidity-controlled cabinets standing in the field. In the middle of the 2nd season of CO2 enrichment, CO2 exchange and transpiration in response to CO2 concentration was measured with a mini-cuvette system. In addition, the same measurements were conducted in the crown of one 60-year-old tree in the field. Number of leaves/tree was enhanced by elevated CO2 and specific leaf area decreased significantly.CO2 compensation points were reached at 75–84 μmol mol−1 CO2. Gas exchange of Ginkgo saplings reacted more intensively upon CO2 than those of the adult Ginkgo. On an average, stomatal conductance decreased by 30% as CO2 concentration increased from 30 to 1000 μmol mol−1 CO2. Water use efficiency of net photosynthesis was positively correlated with CO2 concentration levels. Saturation of net photosynthesis and lowest level of stomatal conductance was reached by the leaves of Ginkgo saplings at >1000 μmol mol−1 CO2. Acclimation of leaf net CO2 assimilation to the elevated CO2 concentration at growth occurred after 2 years of exposure. Maximum of net CO2 assimilation was 56% higher at ambient air CO2 concentration than at 700 μmol mol−1 CO2.  相似文献   

13.
Recent novel mixed blooms of several species of toxic raphidophytes have caused fish kills and raised health concerns in the highly eutrophic Inland Bays of Delaware, USA. The factors that control their growth and dominance are not clear, including how these multi-species HAB events can persist without competitive exclusion occurring. We compared and contrasted the relative environmental niches of sympatric Chattonella subsalsa and Heterosigma akashiwo isolates from the bays using classic Monod-type experiments. C. subsalsa grew over a temperature range from 10 to 30 °C and a salinity range of 5–30 psu, with optimal growth occurring from 20 to 30 °C and 15 to 25 psu. H. akashiwo had similar upper temperature and salinity tolerances but also lower limits, with growth occurring from 4 to 30 °C and 5 to 30 psu and optimal growth between 16 and 30 °C and 10 and 30 psu. These culture results were confirmed by field observations of bloom occurrences in the Inland Bays. Maximum nutrient-saturated growth rates (μmax) for C. subsalsa were 0.6 d−1 and half-saturation concentrations for growth (Ks) were 9 μM for nitrate, 1.5 μM for ammonium, and 0.8 μM for phosphate. μmax of H. akashiwo (0.7 d−1) was slightly higher than C. subsalsa, but Ks values were nearly an order of magnitude lower at 0.3 μM for nitrate, 0.3 μM for ammonium, and 0.2 μM for phosphate. H. akashiwo is able to grow on urea but C. subsalsa cannot, while both can use glutamic acid. Cell yield experiments at environmentally relevant levels suggested an apparent preference by C. subsalsa for ammonium as a nitrogen source, while H. akashiwo produced more biomass on nitrate. Light intensity affected both species similarly, with the same growth responses for each over a range from 100 to 600 μmol photons m−2 s−1. Factors not examined here may allow C. subsalsa to persist during multi-species blooms in the bays, despite being competitively inferior to H. akashiwo under most conditions of nutrient availability, temperature, and salinity.  相似文献   

14.
Estrogens (estrone, E1; estradiol, E2) are oxidized in the breast first to catechols and then to form two ortho-quinones (E1/2-3,4-Q) that react with DNA to form depurinating adducts, which lead to mutations associated with breast cancer. NAD(P)H:quinone oxidoreductase 1 (NQO1) reduces these quinones back to catechols, and thus may protect against this mechanism. We examined whether the inheritance of two polymorphic variants of NQO1 (Pro187Ser or Arg139Trp) would result in poor reduction of E1/2-3,4-Q in normal human mammary epithelial cells (MCF-10F) and increased depurinating adduct formation. An isogenic set of stably transfected normal human breast epithelial cells (MCF-10F) that express a truncated (135Stop), the wild-type, the 139Trp variant or the 187Ser variant of human NQO1 cDNA was constructed. MCF-10F cells showed a low endogenous NQO1 activity. NQO1 expression was examined by RT-PCR and Western blotting, and catalytic activity of reducing E2-3,4-Q to 4-hydroxyE1/2 and associated changes in the levels of quinone conjugates (4-methoxyE1/2, 4-OHE1/2-2-glutathione, 4-OHE1/2-2-Cys and 4-OHE1/2-2-N-acetylcysteine) and depurinating DNA adducts (4-OHE1/2-1-N3Ade and 4-OHE1/2-1-N7Gua) were examined by HPLC with electrochemical detection, as well as by ultra-performance liquid chromatography with tandem mass spectrometry. The polymorphic variants transcribed comparably to the wild-type NQO1, but produced 2-fold lower levels of the protein, suggesting that the variant proteins may become degraded. E1/2-3,4-Q toxicity to MCF-10F cells (IC50 = 24.74 μM) was increased (IC50 = 3.7 μM) by Ro41-0960 (3 μM), a catechol-O-methyltransferase inhibitor. Cells expressing polymorphic NQO1 treated with E2-3,4-Q with or without added Ro41-0960, showed lower ability to reduce the quinone (50% lower levels of the free catechols and 3-fold lower levels of methylated catechols) compared to the wild-type enzyme. The increased availability of the quinones in these cells did not result in greater glutathione conjugation. Instead, there was increased (2.5-fold) formation of the depurinating DNA adducts. Addition of Ro41-0960 increased the amounts of free catechols, quinone conjugates and depurinating DNA adducts. NQO1 polymorphic variants (Arg139Trp and Pro187Ser) were poor reducers of estrogen-3,4-quinones, which caused increased formation of estrogen-DNA adduct formation in MCF-10F cells. Therefore, the inheritance of these NQO1 polymorphisms may favor the estrogen genotoxic mechanism of breast cancer.  相似文献   

15.
《Autophagy》2013,9(11):1657-1672
Channel activators (potentiators) of cystic fibrosis (CF) transmembrane conductance regulator (CFTR), can be used for the treatment of the small subset of CF patients that carry plasma membrane-resident CFTR mutants. However, approximately 90% of CF patients carry the misfolded ΔF508-CFTR and are poorly responsive to potentiators, because ΔF508-CFTR is intrinsically unstable at the plasma membrane (PM) even if rescued by pharmacological correctors. We have demonstrated that human and mouse CF airways are autophagy deficient due to functional sequestration of BECN1 and that the tissue transglutaminase-2 inhibitor, cystamine, or antioxidants restore BECN1-dependent autophagy and reduce SQSTM1/p62 levels, thus favoring ΔF508-CFTR trafficking to the epithelial surface. Here, we investigated whether these treatments could facilitate the beneficial action of potentiators on ΔF508-CFTR homozygous airways. Cystamine or the superoxide dismutase (SOD)/catalase-mimetic EUK-134 stabilized ΔF508-CFTR at the plasma membrane of airway epithelial cells and sustained the expression of CFTR at the epithelial surface well beyond drug withdrawal, overexpressing BECN1 and depleting SQSTM1. This facilitates the beneficial action of potentiators in controlling inflammation in ex vivo ΔF508-CFTR homozygous human nasal biopsies and in vivo in mouse ΔF508-CFTR lungs. Direct depletion of Sqstm1 by shRNAs in vivo in ΔF508-CFTR mice synergized with potentiators in sustaining surface CFTR expression and suppressing inflammation. Cystamine pre-treatment restored ΔF508-CFTR response to the CFTR potentiators genistein, Vrx-532 or Vrx-770 in freshly isolated brushed nasal epithelial cells from ΔF508-CFTR homozygous patients. These findings delineate a novel therapeutic strategy for the treatment of CF patients with the ΔF508-CFTR mutation in which patients are first treated with cystamine and subsequently pulsed with CFTR potentiators.  相似文献   

16.

Background

Cigarette smoking causes Chronic Obstructive Pulmonary Disease (COPD), the 3rd leading cause of death in the U.S. CFTR ion transport dysfunction has been implicated in COPD pathogenesis, and is associated with chronic bronchitis. However, susceptibility to smoke induced lung injury is variable and the underlying genetic contributors remain unclear. We hypothesized that presence of CFTR mutation heterozygosity may alter susceptibility to cigarette smoke induced CFTR dysfunction. Consequently, COPD patients with chronic bronchitis may have a higher rate of CFTR mutations compared to the general population.

Methods

Primary human bronchial epithelial cells derived from F508del CFTR heterozygotes and mice with (CFTR+/-) and without (CFTR+/+) CFTR heterozygosity were exposed to whole cigarette smoke (WCS); CFTR-dependent ion transport was assessed by Ussing chamber electrophysiology and nasal potential difference measurements, respectively. Caucasians with COPD and chronic bronchitis, age 40 to 80 with FEV1/FVC < 0.70 and FEV1 < 60% predicted, were selected for genetic analysis from participants in the NIH COPD Clinical Research Network’s Azithromycin for Prevention of Exacerbations of COPD in comparison to 32,900 Caucasian women who underwent prenatal genetic testing. Genetic analysis involved an allele-specific genotyping of 89 CFTR mutations.

Results

Exposure to WCS caused a pronounced reduction in CFTR activity in both CFTR (+/+) cells and F508del CFTR (+/-) cells; however, neither the degree of decrement (44.7% wild-type vs. 53.5% F508del heterozygous, P = NS) nor the residual CFTR activity were altered by CFTR heterozygosity. Similarly, WCS caused a marked reduction in CFTR activity measured by NPD in both wild type and CFTR heterozygous mice, but the severity of decrement (91.1% wild type vs. 47.7% CF heterozygous, P = NS) and the residual activity were not significantly affected by CFTR genetic status. Five of 127 (3.9%) COPD patients with chronic bronchitis were heterozygous for CFTR mutations which was not significantly different from controls (4.5%) (P = NS).

Conclusions

The magnitude of WCS induced reductions in CFTR activity was not affected by the presence of CFTR mutation heterozygosity. CFTR mutations do not increase the risk of COPD with chronic bronchitis. CFTR dysfunction due to smoking is primarily an acquired phenomenon and is not affected by the presence of congenital CFTR mutations.  相似文献   

17.
Nucleotide-dependent gating of ΔF508-CFTR was evaluated in membrane patches excised from HEK 293 and mouse L-cells and compared to observations on wt-CFTR channels recorded in the same expression systems. ΔF508-CFTR exhibited PKA activated, ATP-dependent channel gating. When compared to wt-CFTR, the K m for ATP was increased by ninefold (260 μm vs. 28 μm) and maximal open probability (P o ) was reduced by 49% (0.21 ± 0.06 vs. 0.41 ± 0.02). Additionally, in the absence of PKA, ΔF508-CFTR inactivated over a 1 to 5 min period whereas wt-CFTR remained active. Time-dependent inactivation could be mimicked in wt-CFTR by the intermittent absence of ATP in the cytosolic solution. The effects of 3-isobutyl-1-methyl xanthine (IBMX), a compound reported to stimulate ΔF508-CFTR, were evaluated on wt- and ΔF508-CFTR channels. At concentrations up to 5 mm, IBMX caused a concentration dependent reduction in the observed single channel amplitude (i) of wt-CFTR (maximal observed reduction 35 ± 3%). However, IBMX failed to significantly alter total patch current because of a concomitant 30% increase in P o . The effects of IBMX on ΔF508-CFTR were similar to effects on wt-CFTR in that i was reduced and P o was increased by similar magnitudes. Additionally, ΔF508-CFTR channel inactivation was dramatically slowed by IBMX. These results suggest that IBMX interacts with the ATP-bound open state of CFTR to introduce a short-lived nonconducting state which prolongs burst duration and reduces apparent single channel amplitude. A secondary effect observed in ΔF508-CFTR, which may result from this interaction, is a prolongation of the activated state. In light of previously proposed linear kinetic models of CFTR gating, these results suggest that IBMX traps CFTR in an ATP-bound state which may preclude inactivation of ΔF508-CFTR. Received: 5 February 1999/Revised: 25 March 1999  相似文献   

18.
Rhabdoid tumors (RTs) are an extremely aggressive pediatric malignancy that results from loss of the INI1/hSNF5 tumor suppressor gene. Loss of INI1 results in aberrant expression of Cyclin D1, which supports rhabdoid tumorigenesis and survival. 4-HPR, a synthetic retinoid that down-modulates Cyclin D1, has shown promise in treating various tumors including RTs. In this study, we have generated a chemical library of peptidomimetic derivatives of 4-HPR in an attempt to create a more biologically active compound for use as a therapeutic agent against RTs and other tumors. We have synthesized novel peptidomimetic compound by substituting alkene backbone with a ring structure that retains the biological activity in cell culture models of rhabdoid tumors. We further identified derivative of peptidomimetic compound (11d, IC50  3 μM) with approximately five times higher potency than 4-HPR (1, IC50  15 μM) based on a survival assay against rhabdoid tumor cells. These studies indicate that peptidomimetic derivatives that retain the cytotoxic activity are promising novel chemotherapeutic agents against RTs and other tumors.  相似文献   

19.
Cystic fibrosis (CF) is caused by mutations in the gene for CFTR, a cAMP-activated anion channel expressed in apical membranes of wet epithelia. Since CFTR is permeable to HCO3, and may regulate bicarbonate exchangers, it is not surprising evidence of changes in extracellular pH (pHo) have been found in CF. Previously we have shown that tracking pHo can be used to differentiate cells expressing wild-type CFTR from controls in mouse mammary epithelial (C127) and fibroblast (NIH/3T3) cell lines. In this study we characterized forskolin-stimulated extracellular acidification rates in epithelia where chemical correction of mutant ΔF508-CFTR converted an aberrant response in acidification (10%+ increase) to wild-type (25%+ decrease). Thus treatment with corrector (10% glycerol) and the resulting increased expression of ΔF508-CFTR at the surface was detected by microphysiometry as a significant reversal from acidification to alkalization of pHo. These results suggest that CFTR activation as well as correction can be detected by carefully monitoring pHo and support findings in the field that extracellular pH acidification may impact the function of airway surface liquid in CF.  相似文献   

20.

Background

The pathological hallmarks of chronic obstructive pulmonary disease (COPD) are inflammation of the small airways (bronchiolitis) and destruction of lung parenchyma (emphysema). These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter.

Methods

We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole.

Results

In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath) of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25), but when gluconate replaced luminal Cl-, the bionic Cl- diffusion potentials (-58 ± 3 mV; n = 25) were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl- permeability was at least 5 times greater than Na+ permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM)+IBMX (100 μM), ATP (100 μM), or adenosine (100 μM), but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM), GlyH-101* (5–50 μM), and CFTRInh-172* (5 μM). RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways.

Conclusion

These results indicate that the small airway of the pig is characterized by a constitutively active Cl- conductance that is most likely due to CFTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号