首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
嗅感受器主要感知外界环境中化学信号分子.本文采用银染、NADPH-组化染色和电镜技术来观察黑斑侧褶蛙(Petophylax nigromaculatus)的嗅器和犁鼻器的功能差异及细胞组成.银染法可对嗅上皮和犁鼻上皮的细胞进行分类及区分.其中,支持细胞胞核深染成黑色,嗅细胞胞核银染为花斑状.细胞计数显示,犁鼻上皮的嗅神经细胞含量百分比显著高于嗅上皮.组化结果显示,黑斑侧褶蛙嗅上皮和犁鼻上皮对NADPH-d表达模式差异显著,前者表达明显高于后者.电镜结果显示,黑斑侧褶蛙嗅上皮和犁鼻上皮的支持细胞由两种类型的细胞组成,分别为纤毛型和颗粒型支持细胞.  相似文献   

2.
Summary The epithelia of the olfactory organ of two cyprinodontoid fish species were studied both by transmission and scanning electron microscopy. The relatively flat floor of the organ is covered by sensory and nonsensory epithelia. The latter is distributed in the form of bands or ridges separating distinct areas of sensory epithelium. Differences between the olfactory organs of the two species investigated related only to the topography and quantitative distribution of the epithelia. Their ultrastructural features are very similar. The nonsensory stratified squamous epithelium contains numerous goblet cells and surface cells provided with microridges. A hypothetical function of the microridges is discussed. The sensory epithelium consists mainly of basal, supporting, and two types of sensory cells, i.e., ciliated and microvillous receptor cells. The cilia exhibit a predominant 9+0 microtubule pattern. Both epithelia are covered by a mucus layer in which all surface structures seem to be embedded. The possible nature, origin, and movement mechanisms of the mucus are discussed.This work was supported by the Deutsche ForschungsgemeinschaftDedicated to Prof. Dr. med. W. Bargmann on the occasion of his 70th birthday  相似文献   

3.
The epidermal maxilla II-gland of Scutigera coleoptrata was investigated using light and electron microscopy. The glandular epithelium surrounds a spacious integumental cavity at the base of the maxilla II. The gland is formed as a compound gland organ that is composed of thousands of epidermal gland units. Each of them consists of four different cell types: a secretory cell, an accessory or intermediary cell, and a proximal and distal canal cell. The intermediary and the two canal cells form a conducting canal. Only in the most distal part of the intermediary cell is the canal lined by a cuticle. In the area of the two canal cells, the conducting canal is completely covered by a cuticle. The canal passes through the cuticle and opens into the spacious integumental cavity, which serves as a secretion reservoir. The structural organization of the epidermal maxilla II-gland was compared to that of other compound epidermal gland organs in Chilopoda and Diplopoda. All these glandular organs in Myriapoda share the same ground pattern.  相似文献   

4.
We describe the ultrastructural organization of the anal organs of Craterostigmus tasmanianus, which are located on the ventral side of the bivalvular anal capsule. Each part of the capsule bears four pore fields with several anal pores. The pores lead into a pore canal, which is surrounded by the single-layered epithelium of the anal organs. Each anal organ is composed of four different cell types: transporting cells of the main epithelium, junctional cells, isolated epidermal glands, and the cells forming the pore canal. The transporting cells exhibit infoldings of the outer cell membranes, forming a basal labyrinth and a poorly developed apical complex. The cells are covered by a specialized cuticle with a widened subcuticular layer. Only the cuticle of the main epithelium is covered by a mucous layer, secreted by the epidermal glands. The ultrastructural organization of the anal organ is comparable to the coxal and anal organs of other pleurostigmophoran Chilopoda. It is likely that the coxal and anal organs of the Pleurostigmophora are homologous, due to their identical ultrastructural organization. Differences concerning the location on the trunk of Pleurostigmophora are not sufficient to reject a hypothesis of homology. Anal organs are found not only in Craterostigmomorpha, but also in most adult Geophilomorpha, and in larvae and most adults of Lithobiomorpha. The anal organs of C. tasmanianus are thought to play an important role in the uptake of atmospheric water. J. Morphol.  相似文献   

5.
Results provided by modern TEM methods indicate the existence of the lophophoral and trunk coelomes but not of the preoral coelom in Phoronida. In the present work, the epistome in Phoronopsis harmeri was studied by histological and ultrastructural methods. Two kinds of cells were found in the frontal epidermis: supporting and glandular. The coelomic compartment is shown to be inside the epistome. This compartment has a complex shape, consists of a central part and two lateral branches, and contacts the lophophoral coelom, forming two complete dissepiments on the lateral sides and a partition with many holes in the center. TEM reveals that some portions of the incomplete partition are organized like a mesentery, with the two layers of cells separated by ECM. The myoepithelial cells of the coelomic lining form the circular and radial musculature of the epistome. Numerous amoebocytes occur in the coelom lumen. The tip of the epistome and its dorso-lateral parts lack a coelomic cavity and are occupied by ECM and muscle cells. The fine structure of the T-shaped vessel is described, and its localization inside lophophoral coelom is demonstrated. We assert that the cavity inside the epistome is the preoral coelom corresponding to the true preoral coelom of the larva of this species. Proving this assertion will require additional study of metamorphosis in this species. To clarify the patterns of coelom organization in phoronids, we discuss the bipartite coelomic system in Phoronis and the tripartite coelomic system in Phoronopsis.  相似文献   

6.
The structure of the olfactory organ in larvae and adults of the basal anuran Ascaphus truei was examined using light micrography, electron micrography, and resin casts of the nasal cavity. The larval olfactory organ consists of nonsensory anterior and posterior nasal tubes connected to a large, main olfactory cavity containing olfactory epithelium; the vomeronasal organ is a ventrolateral diverticulum of this cavity. A small patch of olfactory epithelium (the “epithelial band”) also is present in the preoral buccal cavity, anterolateral to the choana. The main olfactory epithelium and epithelial band have both microvillar and ciliated receptor cells, and both microvillar and ciliated supporting cells. The epithelial band also contains secretory ciliated supporting cells. The vomeronasal epithelium contains only microvillar receptor cells. After metamorphosis, the adult olfactory organ is divided into the three typical anuran olfactory chambers: the principal, middle, and inferior cavities. The anterior part of the principal cavity contains a “larval type” epithelium that has both microvillar and ciliated receptor cells and both microvillar and ciliated supporting cells, whereas the posterior part is lined with an “adult‐type” epithelium that has only ciliated receptor cells and microvillar supporting cells. The middle cavity is nonsensory. The vomeronasal epithelium of the inferior cavity resembles that of larvae but is distinguished by a novel type of microvillar cell. The presence of two distinct types of olfactory epithelium in the principal cavity of adult A. truei is unique among previously described anuran olfactory organs. A comparative review suggests that the anterior olfactory epithelium is homologous with the “recessus olfactorius” of other anurans and with the accessory nasal cavity of pipids and functions to detect water‐borne odorants. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
The squamates are composed of many taxa, among which there is morphological variation in the vomeronasal organ (VNO). To elucidate the evolution of chemoreception in squamate reptiles, morphological data from the VNO from a variety of squamate species is required. In this study, the morphology of the VNO of the grass lizard Takydromus tachydromoides was examined using light and electron microscopy. The VNO consists of a pair of dome-shaped structures, which communicate with the oral cavity. There are no associated glandular structures. Microvilli are present on the apical surfaces of receptor cells in its sensory epithelium, as well as on supporting cells, and there are centrioles and ciliary precursor bodies on the dendrites. In addition to ciliated cells and basal cells in the non-sensory epithelium, there is a novel type of non-ciliated cell in T. tachydromoides. They have constricted apical cytoplasm and microvilli instead of cilia, and are sparsely distributed in the epithelium. Based on these results, the variation in the morphology of the VNO in scincomorpha, a representative squamate taxon, is discussed.  相似文献   

8.
Tubular epithelia come in various shapes and sizes to accommodate the specific needs for transport, excretion and absorption in multicellular organisms. The intestinal tract, glandular organs and conduits for liquids and gases are all lined by a continuous layer of epithelial cells, which form the boundary of the luminal space. Defects in epithelial architecture and lumen dimensions will impair transport and can lead to serious organ malfunctions. Not surprisingly, multiple cellular and molecular mechanisms contribute to the shape of tubular epithelial structures. One intriguing aspect of epithelial organ formation is the highly coordinate behavior of individual cells as they mold the mature lumen. Here, we focus on recent findings, primarily from Drosophila, demonstrating that informative cues can emanate from the developing organ lumen in the form of solid luminal material. The luminal material is produced by the surrounding epithelium and helps to coordinate changes in shape and arrangement of the very same cells, resulting in correct lumen dimensions.  相似文献   

9.
 In Craterostigmus tasmanianus, first results of the cellular organization of anal organs within the ’ano-genital’ capsule are presented. Each valve of the ’ano-genital’ capsule bears four pore fields ventrally, each of them consisting of several pore openings of the anal organs. The pores lead into a cuticle-lined pore channel, the base of which is surrounded by a single-layered epithelium that is composed of three different cell types. The main epithelium consists of radially arranged transport-active cells surrounded by exocrine cells, and the cells of the pore channel. The cells of the transporting epithelium show deep invaginations of the apical and basal cell surfaces and plasmalemma-mitochondrial complexes. These cells are covered by a specialized cuticle with a prominent subcuticle. Exocrine glands secrete a mucous layer on the cuticle of the main epithelium. The type of anal organ present in Craterostigmus tasmanianus shows similarities to coxal and anal organs found in other Pleurostigmophora in the chilopods. The possible function of the anal organs in uptaking water vapour is discussed. It is appropriate to call the organs within the ’ano-genital’ capsule of Craterostigmus tasmanianus ”anal organs”, as components of the genital segments are not involved. Accepted: 17 November 1996  相似文献   

10.
The structure of the epidermis of Travisia forbesii was described using light and electron microscopy. The epidermis is a highly modified variant of the normal one-layer polychaete epithelium. It consists of basal epidermal cells and an external layer of closely sited papillae consisting of glandular and supportive epidermal cells, and extensive electron-transparent intercellular spaces. The papillae are embedded in the thick cuticle. Each papilla has a peduncle, which is formed by one cell that penetrates the inner cuticle layer to the basal epidermal cells. A fold of basement membrane forms the core of the peduncle and ends in the base of a papilla. All epidermal cells are connected to each other with apical cell junctions and to the basement membrane with hemidesmosomes, so the epithelium is continuous and uninterrupted. The epidermis has an intra-epidermal neuron plexus. The structure of the papillae is compared with papillae and tubercles of other polychaetes, and the possible functional significance and phylogenetic implications of these structures are discussed.  相似文献   

11.
Abstract. Species of Helicoradomenia are constantly found at hydrothermal vent sites of the eastern and western Pacific Ocean. The digestive tract of 2 species of the genus was investigated with special focus on the ultrastructure and histochemistry of epithelia and glandular organs. The preoral cavity and foregut epithelia are composed of microvillous main cells, secretory cells producing protein-rich substances, and sensory cells with specialized cilia. The foregut bears a pair of glands with 3 types of extremely long-necked glandular cells surrounded by musculature. Each glandular cell opens directly into the radula pocket without a gland duct. The large radula apparatus consists of pairs of denticulated bars resting on a flexible radular membrane without elaboration of a subradular membrane. The midgut has a narrow, mid-dorsal tract of ciliary cells, but most of the epithelium is composed of digestive cells with a highly developed lysosomal system. The hindgut is lined by ciliated cells and free of glands. The foregut and radula seem to be highly efficient in the capture of relatively large, motile prey. Food contents within the midgut lumen and within some of the large secondary lysosomes indicate a triploblastic metazoan prey of non-cnidarian origin. The digestive tract is not adapted to microvory and there is no indication of a symbiosis with chemoautotrophic bacteria.  相似文献   

12.
Theisen, B., Breucker, H., Zeiske, E., Melinkat, R. 1980. Structure and development of the olfactory organ in the garfish Belone belone (L.) (Teleostei, Atheriniformes). (Institute of Comparative Anatomy, University of Copenhagen, Denmark; Anatomisches Institut, Universität Hamburg, and Zoologisches Institut und Zoologisches Museum, Universität Hamburg, Federal Republic of Germany.) — Acta zool. (Stockh.) 61(3): 161–170. The structure and development of the olfactory organ in the garfish Belone belone (L.) were studied by light and electron microscopy (SEM and TEM). The olfactory organ has the shape of an open groove with a protruding papilla. In embryos and early juveniles the groove is smooth and is provided with a continuous sensory epithelium. During ontogenesis the papilla develops and the composition of the epithelium is changed as areas of nonsensory epithelium appear and eventually separate the sensory epithelium into islets. In adults the sensory epithelium consists of supporting, basal, and two types of receptor cells, ciliated and microvillous. In juveniles also ciliated nonsensory cells are present. This difference can be correlated with differing locomotory habits of adults and juveniles. The receptor cilia show a 9 + 0 microtubular pattern while the nonsensory cilia have the general 9 + 2 pattern. Deviating dendritic endings were found and are considered an indication of ongoing cell dynamics.  相似文献   

13.
The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions.  相似文献   

14.
Summary The basilar papilla of the lizard Calotes versicolor contains about 225 sensory cells. These are of two types: the short-haired type A cells in the ventral (apical) part of the organ, and the type B cells with long hair bundles, in the dorsal (basal) part of the organ. The type A cells are unidirectionally oriented and are covered by a tectorial membrane while the type B cells lack a covering structure and their hair bundles are oriented bidirectionally. Apart from those differences, the type A and type B cells are similar. They are columnar, and display the features common to most sensory cells in inner ear epithelia. The sensory cells are separated by supporting cells, which have long slender processes that keep the sensory cells apart. Close to the surface of the basilar papilla a terminal bar of specialized junctions interlocks adjacent cells. Below this, adjacent supporting cells are linked by an occluding junction.The cochlear nerve enters from the medial (neural) aspect. The fibres of the nerve lose their myelin sheaths as they enter the basilar papilla. Each sensory cell is associated with several nerve endings. All the nerves identified were afferent. Marked variations were seen between nerve endings in the basilar papilla, but no morphological equivalents of any functional differences were observed.This work is supported by grant no. B76-12X-00720-11A from the Swedish Medical Research Council, and by funds from the Karolinska Institute, Stockholm, Sweden.  相似文献   

15.
Summary The coxal organs of different Geophilomorpha were studied by scanning and by transmission electron microscopy.1) The coxae of the last trunk-segment contain pores in different arrangements and numbers. They are the openings of the coxal organs.2) The coxal organs are formed by four different cell types: the main epithelium consists of radially arranged transporting cells, surrounded by junctional cells, gland cells, and the cells of the pore channel.3) The cells of the transporting epithelium show an enlargement of the apical and basal surface. Deep and narrow extracellular channels of the apical infoldings are closely associated by mitochondria (plasmalemma-mitochondrial complexes). The epithelium is covered by a prominent cuticle with a spacious subcuticle.4) A distinct mucous layer covers the cuticle of the transporting epithelia, and is secreted by the gland cells.5) A small cellular sheath separates the epithelium of the coxal organ against the haemolymph.6) The possible function of the coxal organs in ion and fluid transport is discussed.  相似文献   

16.
Approximately 60,000 patients in the United States are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations. In the present study, we characterize cells derived from human kidney papilla and show their capacity for tubulogenesis. In situ, nestin+ and CD133/1+ cells were found extensively intercalated between tubular epithelia in the loops of Henle of renal papilla, but not of the cortex. Populations of primary cells from the renal cortex and renal papilla were isolated by enzymatic digestion from human kidneys unsuited for transplant and immuno-enriched for CD133/1+ cells. Isolated CD133/1+ papillary cells were positive for nestin, as well as several human embryonic stem cell markers (SSEA4, Nanog, SOX2, and OCT4/POU5F1) and could be triggered to adopt tubular epithelial and neuronal-like phenotypes. Isolated papillary cells exhibited morphologic plasticity upon modulation of culture conditions and inhibition of asymmetric cell division. Labeled papillary cells readily associated with cortical tubular epithelia in co-culture and 3-dimensional collagen gel cultures. Heterologous organ culture demonstrated that CD133/1+ progenitors from the papilla and cortex became integrated into developing kidney tubules. Tubular epithelia did not participate in tubulogenesis. Human renal papilla harbor cells with the hallmarks of adult kidney stem/progenitor cells that can be amplified and phenotypically modulated in culture while retaining the capacity to form new kidney tubules. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

17.
The copulatory organ of Pantodon buchholzi is described. It consists of two folded, complex structures, situated in two pouches, which open ventrally. The wall between the pouches contains the modified skeletal elements of a part of the anal fin. Laterally each pouch is covered by a bony plate. The structures are connected ventrally to the bony plates and consist of a spiral of parallel bone rays, connective tissue with many blood vessels, and covering epithelium. The organ is different from all other copulatory organs described in fishes.  相似文献   

18.
In this study, semi-thin sections stained with histochemical techniques and transmission electron microscopy were used to obtain new data about the morphology and function of the male copulatory apparatus of the cephalaspidean gastropod Bulla striata. The apparatus comprises a vestibule, a penial papilla and a prostate consisting of a coiled unbranched tube ending in a blind caecum. The penial papilla and the coiled tubular prostate are enclosed by a muscular sheath, which is continuous with the muscular tissue of the vestibule. The epithelium lining the lumen of the vestibule is formed by ciliated and mucus-secreting cells. Two new types of subepithelial secretory cells were discovered in this region. The penial papilla is a muscular structure without secretory cells in the epithelium lining the narrow lumen. The tubule that constitutes the prostate possesses a muscular wall and can be divided in three distinct regions: a non-secretory duct connected to the penial papilla, a glandular region rich in large secretory cells and the terminal caecum containing just a few small secretory cells. In the terminal blind caecum, the muscular sheath is fused with the muscular wall of the tubular prostate. Large numbers of spermatozoa were found in the glandular region and in the terminal caecum of the prostate. A new functional mechanism is proposed to explain penial eversion during copulation. This differs from a previous hypothesis in two main aspects: (1) existence of a permanent penial papilla in mature animals acting as a functional penis and (2) functional role of vestibule during copulation, which everts and surrounds the penial papilla, while the latter protrudes outwards.  相似文献   

19.
The position and structure of paired ‘lateral organs’ in the foot of Arthritica semen and Arthritica bifurca might indicate a chemosensory function. In both species part of the organ is also glandular. In A. semen the glandular epithelium is detached piecemeal and, probably by means of the foot, is moved to and grafted upon the gills of the same individual. The transferred epithelia appear as disk‐shaped actively secretory ‘gill bodies’ which, attached to the abfrontal side of the inner demibranch, replace the ordinary unciliated gill epithelium. The secretion is liberated into the suprabranchial chamber, which serves as a marsupium, but its function is uncertain. Arthritica semen is a protandric hermaphrodite and produces very large ova that undergo a direct development that results in a non‐planktonic lecithotrophic crawling juvenile stage. The sperm cells have filiform nuclei that are straight in the euspermatozoa and more or less helicoidal in what is considered to represent paraspermatozoa. By a process of aggregation, spermatozeugmata are formed which consist exclusively either of euspermatozoa or paraspermatozoa. Spermatozoa are stored in the oviduct in A. semen but in paired seminal receptacles in A. bifurca.  相似文献   

20.
The Korean shuttles mudskipper Periophthalmus modestus has paired olfactory organs on its snout, consisting of anterior and posterior nostrils, a single olfactory canal with sensory and nonsensory epithelia, and a single accessory nasal sac. Its sensory epithelium consists of numerous islets forming a pseudostratified layer and contains various cells: olfactory receptor neurons, supporting cells, basal cells, lymphatic cells (LCs), and axon bundles. The sensory epithelium is a stratified squamous layer comprising stratified epithelial cells, mucous cells (MCs) with glycogen, flattened cells (FCs), LCs, and unidentified cells. Specific structures are as follows: (a) a tubular anterior nostril projecting outward, (b) a slit posterior nostril, (c) an elongated olfactory canal, (d) an ethmoidal accessory nasal sac, (e) axon bundles found only in the basal layer of the sensory epithelium, (f) FCs only at the top of the nonsensory epithelium, and (g) glycogen-containing MCs. Such structures seem to be unique in that they have not been observed in most teleost fishes spending their whole life in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号