首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study is concerned with the characterization of the morphology of the calcium release channel of sarcoplasmic reticulum (SR) from fast-twitch skeletal muscle, which is involved in excitation-contraction coupling. We have previously purified the ryanodine receptor and found it to be equivalent to the feet structures, which are involved, in situ, in the junctional association of transverse tubules with terminal cisternae of SR. The receptor is an oligomer of a single high molecular weight polypeptide and when incorporated into phospholipid bilayers, has channel conductance which is characteristic of calcium release in terminal cisternae of SR. The purified channel can be observed by electron microscopy using different methods of sample preparation, with complementary views being observed by negative staining, double staining, thin section and rotary shadowing electron microscopy. Three views can be observed and interpreted: (a) a square face which, in situ, is junctionally associated with the transverse tubule or junctional face membrane; (b) a rectangle equivalent to the side view; and (c) a diamond shape equivalent to the side view, of which the base portion appears to be equivalent to the transmembrane segment. Negative staining reveals detailed substructure of the channel. A computer averaged view of the receptor displays fourfold symmetry and ultrastructural detail. The dense central mass is divided into four domains with a 2-nm hole in the center, and is enclosed within an outer frame which has a pinwheel appearance. Double staining shows substructure of the square face in the form of parallel linear arrays (six/face). The features of the isolated receptor can be correlated with the structure observed in terminal cisternae vesicles. Sections tangential to the junctional face membrane reveal that the feet structures (23-nm squares) overlap so as to enclose smaller square spaces of approximately 14 nm/side. We suggest that this is equivalent to the transverse tubule face and that the terminal cisternae face is smaller (approximately 17 nm/face) and has larger alternating spaces as a consequence of the tapered sides of the foot structures. Image reconstruction analysis appears to be feasible and should provide the three-dimensional structure of the channel.  相似文献   

2.
We have proposed that the naturally occurring alkaloid ryanodine reduces the release of calcium from the sarcoplasmic reticulum (SR) in cardiac muscle cells. We summarize the data that support this hypothesis and discuss possible mechanisms for 1) the differences in sensitivity to ryanodine displayed by intact skeletal and cardiac muscle preparations vs. that of skinned cardiac cells and isolated SR membranes, 2) the ability of ryanodine to cause either an increase or a decrease in calcium accumulation by isolated skeletal muscle SR vesicles depending on experimental conditions, and 3) the positive inotropic effects produced by ryanodine in cardiac muscle preparations under certain experimental circumstances. In addition, we also show how ryanodine can be used to evaluate the contributions made by SR calcium release to cellular events in striated muscle.  相似文献   

3.
The effect of the plant alkaloid ryanodine on the skeletal muscle sarcoplasmic reticulum Ca2+ release channel was studied by determining the Ca2+ permeability of "heavy" vesicles passively loaded with 45Ca2+ in the presence or absence of ryanodine. Depending on the experimental conditions, ryanodine either stimulated or inhibited Ca2+ efflux. Vesicles were rendered permeable to 45Ca2+ at a ryanodine concentration of 0.01 microM when diluted into a medium containing the two Ca2+ release channel inhibitors Mg2+ and ruthenium red. At ryanodine concentrations greater than 10 microM, 45Ca2+ efflux was inhibited in channel-activating (5 microM Ca2+) or -inhibiting (10 mM Mg2+ plus 10 microM ruthenium red) media. An optimal stimulatory effect was observed when vesicles were incubated with ryanodine at 37 degrees C and in media that caused partial opening of the channel. Similar results to those described above were obtained using cardiac sarcoplasmic reticulum vesicles that were capable of rapid 45Ca2+ efflux. Use of the slowly permeating molecule L-[3H]glucose allowed measurement of channel-mediated efflux rates from vesicles in the presence and absence of ryanodine. At low activating concentrations, ryanodine did not appreciably change the regulation of L-glucose efflux rates by external Ca2+, Mg2+, and adenine nucleotide. These results suggested two possible modes of action of ryanodine: 1) a change in the gating mechanism of the channel which is not readily detected using the slowly permeating molecule L-glucose or 2) a change in channel structure which prevents its complete closing.  相似文献   

4.
Fragmented heavy sarcoplasmic reticulum was solubilized by cholate, and proteins were subsequently fractionated by using diethylaminoethyl-cellulose (DEAE-cellulose) column chromatography. A fraction was collected in which proteins with molecular weights between 31,000 and 45,000 u were major components. This fraction, when incorporated into Ca2+ -loaded liposomes, facilitated the Ca2+ efflux. The rate of efflux was regulated by the external Ca2+ concentration, reaching a maximum at 3 microM Ca2+. The Ca2+ efflux was suppressed by Mg2+.  相似文献   

5.
Ryanodine is a neutral plant alkaloid which functions as a probe for an intracellular Ca2+ release channel (ryanodine receptor) in excitable tissues. Using [3H]ryanodine, a 30 S protein complex comprised of four polypeptides of Mr 565,000 has been isolated and functionally reconstituted into planar lipid bilayers. The effects of salt concentration and divalent cations on skeletal muscle sarcoplasmic reticulum [3H]ryanodine binding and Ca2+ release channel activity have been compared. These studies suggest that ryanodine is a good probe for investigating the function of the release channel.  相似文献   

6.
Calcium release from sarcoplasmic reticulum (SR) has been elicited in response to additions of many different agents. Activators of Ca2+ release are here tentatively classified as activators of a Ca2+-induced Ca2+ release channel preferentially localized in SR terminal or as likely activators of other Ca2+ efflux pathways. Some of these pathways may be associated with several different mechanisms for SR Ca2+ release that have been postulated previously. Studies of various inhibitors of excitation-contraction coupling and of certain forms of SR Ca2+ release are summarized. The sensitivity of isolated SR to certain agents is unusually affected by experimental conditions. These effects can seriously undermine attempts to anticipate effects of the same pharmacological agentsin situ. Finally, mention is made of a new preparation (sarcoballs) designed to make the pharmacological study of SR Ca2+ release more accessible to electrophysiologists, and some concluding speculations on the future of SR pharmacology are offered.  相似文献   

7.
The calcium release channel of sarcoplasmic reticulum mediates Ca2+ release which triggers muscle contraction in excitation-contraction coupling. The channels have been identified morphologically with the feet structures, which are involved in junctional association of terminal cisternae of sarcoplasmic reticulum with the transverse tubules to form the triad junction. In this study, we further characterize the action of drugs on the calcium release channel from sarcoplasmic reticulum fused into planar bilayers. Adriamycin is an effective cancer chemotherapeutic drug, which is limited by its cardiotoxicity. The drug, when added to the myoplasmic side (cis side), activates channel opening at microM concentrations in a dose dependent manner. Adriamycin together with ATP (mM) gives optimal activation, with an open probability (Po) of approximately 1.0. Ruthenium red added to the cis side, equivalent to the cytoplasmic (myoplasmic) domain, completely blocks channel opening. Qualitatively similar results are obtained with adriamycinol, the major metabolite of adriamycin. The inhibition by adriamycin is not reversed by reperfusion to wash out the drug. Silver ions are also found to activate the channel. The conductance of the channel activated by adriamycin, adriamycinol or Ag+ is approximately 100 ps, similar to that previously reported for activation of the channel with Ca2+ and ATP. Ruthenium red has previously been observed to block channel activation from the cytoplasmic side.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
This article discusses how changes in luminal calcium concentration affect calcium release rates from triad-enriched sarcoplasmic reticulum vesicles, as well as single channel opening probability of the ryanodine receptor/calcium release channels incorporated in bilayers. The possible participation of calsequestrin, or of other luminal proteins of sarcoplasmic reticulum in this regulation is addressed. A comparison with the regulation by luminal calcium of calcium release mediated by the inositol 1,4,5-trisphosphate receptor/calcium channel is presented as well.  相似文献   

9.
Ag+-induced Ca2+ release in isolated sarcoplasmic reticulum (SR) was studied by the stopped flow method monitoring chlortetracycline fluorescence change. After improving the experimental procedure, the initial rate of Ca2+ release could be determined more precisely than before. Micromolar concentrations of Ag+ specifically enhanced Ca2+ efflux from heavy fraction of SR vesicles (HSR). This specific effect was referred to as Ag+-induced calcium release. The Ag+-induced Ca2+ efflux was activated by caffeine and ATP, but was inhibited by Mg2+ and procaine. Further, Ag+ enhanced the Ca2+-induced Ca2+ release over the whole range of Ca2+ concentrations, similarly to ATP. Parallel to Ca2+ efflux, Mg2+ efflux, measured by the same method, was also activated by Ag+. Choline permeability determined by the light scattering method was also activated by Ag+. The results suggest that Ag+ binds to the activation site of the Ca2+-induced Ca2+ release channel and opens the channel. The Ag+ binding site is different from the Ca2+ binding site but similar to the ATP binding site.  相似文献   

10.
The lipophilic anion tetraphenylboron (TPB-) but not the lipophilic cation tetraphenylphosphonium (TPP+) increased the choline permeability of isolated sarcoplasmic reticulum (SR). Choline permeability was mainly measured by the stopped flow method by following the change in scattered light intensity. TPB- and TPP+ did not affect the choline permeabilities of liposomes, liver microsomes, or denatured SR vesicles. These phenomena are similar to the Ca2+ release phenomena activated by TPB- reported by Shoshan, MacLennan, and Wood (J. Biol. Chem. 258, 2837 (1983)). These results strongly suggest that TPB- activates a pre-existing channel of SR membrane and choline permeates through the same channel as that for the Ca2+ release. This channel is different from that for the Ca2+-induced Ca2+ release. The former is present in all of the vesicles formed by fragmented SR, while the latter is rich in the heavy fraction of fragmented SR and poor in the light fraction. The channel specificities for permeable ions are different from each other. For example, the latter passes Tris+ but the former does not. The physiological role of this channel is not clear at present.  相似文献   

11.
In striated muscle contraction is under the tight control of myoplasmic calcium concentration ([Ca2+]i): the elevation in [Ca2+]i and the consequent binding of calcium to troponin C enables, while the decrease in [Ca2+]i prevents the actin-myosin interaction. Calcium ions at rest are stored in the sarcoplasmic reticulum (SR) from which they are rapidly released upon the depolarisation of the sarcolemmal and transverse (T-) tubular membranes of the muscle cell. The protein responsible for this controlled and fast release of calcium is the calcium release channel found in the membrane of the terminal cisternae of the SR. This review focuses on the physiological and pharmacological modulators of the calcium release channel and tries to draw an up-to-date picture of the events that occur between T-tubular depolarisation and the release of calcium from the SR.  相似文献   

12.
The time course of changes in the intravesicular Ca2+ concentration ([Ca2+]i) in terminal cisternal sarcoplasmic reticulum vesicles upon the induction of Ca2+ release was investigated by using tetramethylmurexide (TMX) as an intravesicular Ca2+ probe. Upon the addition of polylysine at the concentration that led to the maximum rate of Ca2+ release, [Ca2+]i decreased monotonically in parallel with Ca2+ release. Upon induction of Ca2+ release by lower concentrations of polylysine, [Ca2+]i first increased above the resting level, followed by a decrease well below it. The release triggers polylysine, and caffeine brought about dissociation of calcium that bound to a nonvesicular membrane segment consisting of the junctional face membrane and calsequestrin bound to it, as monitored with TMX. No Ca2+ dissociation from calsequestrin-free junctional face membranes or from the dissociated calsequestrin was produced by release triggers, but upon reassociation of the dissociated calsequestrin and the junctional face membrane, Ca2+ dissociation by triggers was restored. On the basis of these results, we propose that the release triggers elicit a signal in the junctional face membrane, presumably in the foot protein moiety, which is then transmitted to calsequestrin, leading to the dissociation of the bound calcium; and in SR vesicles, to the transient increase of [Ca2+]i, and subsequently release across the membrane.  相似文献   

13.
We have previously demonstrated that H2O2 at millimolar concentrations induces Ca(2+) release from actively loaded sarcoplasmic reticulum (SR) vesicles and induces biphasic [(3)H]ryanodine binding behavior. Considering that hypochlorous acid (HOCl) is a related free radical and has been demonstrated to be a more effective oxidant of proteins, we evaluated the effects of HOCl on sarcoplasmic reticulum Ca(2+)-channel release mechanism. In a concentration-dependent manner, HOCl activates the SR Ca(2+) release channel and induces rapid release of Ca from actively loaded vesicles. HOCl-induced Ca(2+) release is inhibited in the presence of millimolar concentrations of DMSO. High-affinity [(3)H]ryanodine binding is also enhanced at concentrations from 10 to 100 microM. At HOCl concentrations of >100 microM, equilibrium binding is inhibited. HOCl stimulation of binding is inhibited by the addition of dithiothreitol. The direct interaction between HOCl and the Ca(2+) release mechanism was further demonstrated in single-channel reconstitution experiments. HOCl, at 20 microM, activated the Ca(2+) release channel after fusion of a SR vesicle to a bilayer lipid membrane. At 40 microM, Ca(2+)-channel activity was inhibited. Pretreatment of SR vesicles with HOCl inhibited the fluorescence development of a fluorogenic probe specific to thiol groups critical to channel function. These results suggest that HOCl at micromolar concentrations can modify SR Ca(2+) handling.  相似文献   

14.
Summary Ca2+-induced Ca2+ release at the terminal cisternae of skeletal sarcoplasmic reticulum was demonstrated using heavy sarcoplasmic reticulum vesicles. Ca2+ release was observed at 10 m Ca2+ in the presence of 1.25mm free Mg2+ and was sensitive to low concentrations of ruthenium red and was partially inhibited by valinomycin. These results suggest that the Ca2+-induced Ca2+ release is electrogenic and that an inside negative membrane potential created by the Ca2+ flux opens a second channel that releases Ca2+. Results in support of this formulation were obtained by applying a Cl gradient or K+ gradient to sarcoplasmic reticulum vesicles to initiate Ca2+ release. Based on experiments the following hypothesis for the excitation-contraction coupling of skeletal muscle was formulated. On excitation, small amounts of Ca2+ enter from the transverse tubule and interact with a Ca2+ receptor at the terminal cisternae and cause Ca2+ release (Ca2+-induced Ca2+ release). This Ca2+ flux generates an inside negative membrane potential which opens voltage-gated Ca2+ channels (membrane potential-dependent Ca2+ release) in amounts sufficient for contraction.  相似文献   

15.
Single K channels from skeletal muscle sarcoplasmic reticulum were incorporated into artificial membranes. Ryanodine applied to either side of the membrane did not affect the gating nor the conductance properties of those channels. These results suggest that the site of action of ryanodine is limited only to the calcium channels present in the membrane of sarcoplasmic reticulum (1).  相似文献   

16.
17.
To test whether ryanodine blocks the release of calcium from the sarcoplasmic reticulum in cardiac muscle, we examined its effects on the aftercontractions and transient depolarizations or transient inward currents developed by guinea pig papillary muscles and voltage-clamped calf cardiac Purkinje fibers in potassium-free solutions. Ryanodine (0.1-1.0 microM) abolished or prevented aftercontractions and transient depolarizations by the papillary muscles without affecting any of the other sequelae of potassium removal. In the presence of 4.7 mM potassium and at a stimulation rate of 1 Hz, ryanodine had only a small variable effect on papillary muscle force development and action potential characteristics. In calf Purkinje fibers, ryanodine (1 nM-1 microM) completely blocked the aftercontractions and transient inward currents without altering the steady state current-voltage relationship. Ryanodine also abolished the twitch in potassium-free solutions, but it enhanced the tonic force during depolarizing voltage- clamp steps. This latter effect was dependent on the combination of ryanodine and potassium-free solutions. The slow inward current was not blocked by 1 microM ryanodine, but ryanodine did appear to abolish an outward current that remained in the presence of 0.5 mM 4- aminopyridine. Our observations are consistent with the hypothesis that ryanodine, by inhibiting the release of calcium from the sarcoplasmic reticulum, prevents the oscillations in intracellular calcium that activate the transient inward currents and aftercontractions associated with calcium overload states.  相似文献   

18.
Mechanisms of calcium release in sarcoplasmic reticulum.   总被引:2,自引:0,他引:2  
G Inesi  N Malan 《Life sciences》1976,18(8):773-779
The involvement of Sarcoplasmic Reticulum (SR) in relaxation of skeletal muscle has been studied extensively since vesicular fragments of SR membrane were found in the microsomal fraction of muscle homogenates (1,2). It was shown that the isolated SR vesicles exhibit ATP dependent calcium transport in vitro, reducing the Ca2+ concentration in the medium to levels (3) and at rates (4,5) compatible with relaxation of myofibrils in physiological conditions (6).The question of calcium release, however, has been elusive for a long time. In this regard it is known that skeletal muscle SR is able to store an amount of calcium which is sufficient for activation of myofibrils. Therefore, it is simply assumed that upon membrane excitation calcium is released from SR, thereby raising the Ca2+ concentration in the myoplasm and initiating contraction.Recently various experiments were performed demonstrating that calcium release from SR can occur by different mechanisms of great interest and possibly of physiological relevance. These mechanisms will be discussed here.  相似文献   

19.
The CHAPS-solubilized and purified 30S ryanodine receptor protein complex from skeletal sarcoplasmic reticulum (SR) was incorporated into planar lipid bilayers. The resulting electrical activity displayed similar responses to agents such as Ca2+, ATP, ryanodine, or caffeine as the native Ca2+ release channel, confirming the identification of the 30S complex as the Ca2+ release channel. The purified channel was permeable to monovalent ions such as Na+, with the permeability ratio PCa/PNa approximately 5, and was highly selective for cations over anions. The purified channel also showed at least four distinct conductance levels for both Na+ and Ca2+ conducting ions, with the major subconducting level in NaCl buffers possessing half the conductance value of the main conductance state. These levels may be produced by intrinsic subconductances present within the channel oligomer. Several of these conductances may be cooperatively coupled to produce the characteristic 100 +/- 10 pS unitary Ca2+ conductance of the native channel.  相似文献   

20.
Summary The structural consequences of clamping the transepithelial potential difference across the toad's urinary bladder have been examined. Reducing the potential to zero (short-circuiting) produced no apparent changes in the morphology of any of the four cell types which comprise the epithelium. Computer assisted, morphometric analysis of quick frozen specimens revealed no measurable difference in granular cell volume between open- and short-circuited preparations. However, when the open-circuit potential was quantitatively reversed (serosa negative with respect to mucosa), some of the preparations showed a marked increase in granular cell volume. To examine this more systematically twelve preparations were voltage-clamped at 50 mV (serosa negative); eight of the twelve revealed prominent granular cell swelling relative to control, short-circuited preparations. Only in this group of eight had the external circuit current fallen substantially during the clamping interval. Mitochondria-rich cells were not affected detectably. Application of the diuretic amiloride prior to clamping at reversed potential prevented granular cell swelling in every case. Goblet cells which were often affected by the –50 mV clamp were not protected by the diuretic. Granular cell swelling thus appeared to be dependent on sodium entry at the mucosal surface. We also observed that, after voltage reversal, the apical tight junctions of the bladders were blistered as they are with hypertonic mucosal media. This blistering was associated with an increase in passive ionic permeability and was not prevented by application of amiloride. This finding is consistent with the evidence that the junction is a complex barrier with asymetric, and hence, rectifying properties for intrinsic ionic conductance as well as hydraulic permeability. These findings, together with others from the literature, lead to the conclusion that the granular cells constitute the principal, if not sole, elements for active sodium transport across toad urinary bladder and that they swell when sodium entry exceeds the transport capacity of the pump at the basal-lateral surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号