首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information from X-ray crystal structures were used to optimize the potency of a HTS hit in a Hsp90 competitive binding assay. A class of novel and potent small molecule Hsp90 inhibitors were thereby identified. Enantio-pure compounds 31 and 33 were potent in PGA-based competitive binding assay and inhibited proliferation of various human cancer cell lines in vitro, with IC(50) values averaging 20 nM.  相似文献   

2.
Docking-based virtual screening identified 1-(2-phenol)-2-naphthol compounds as a new class of Hsp90 inhibitors of low to sub-micromolar potency. Here we report the binding affinities and cellular activities of several members of this class. A high resolution crystal structure of the most potent compound reveals its binding mode in the ATP binding site of Hsp90, providing a rationale for the observed activity of the series and suggesting strategies for developing compounds with improved properties.  相似文献   

3.
A series of novel and potent small molecule Hsp90 inhibitors was optimized using X-ray crystal structures. These compounds bind in a deep pocket of the Hsp90 enzyme that is partially comprised by residues Asn51 and Ser52. Displacement of several water molecules observed crystallographically in this pocket using rule-based strategies led to significant improvements in inhibitor potency. An optimized inhibitor (compound 17) exhibited potent Hsp90 inhibition in ITC, biochemical, and cell-based assays (Kd = 1.3 nM, Ki = 15 nM, and cellular IC50 = 0.5 μM).  相似文献   

4.
A new series of compounds, 5-substituted 2-amino-4-chloro-8-((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)-7,8-dihydropteridin-6(5H)-ones, have been designed and identified as potent and selective inhibitors of Hsp90. These compounds demonstrated nanomolar potency toward both Hsp90-regulated Her2 degradation and the growth of a panel of human tumor cell lines in cell-based assays. High selectivity of these compounds toward Hsp90 was evident given that they did not inhibit a panel of 34 kinases at 10 μM. The structure–activity relationship (SAR) of this series is reported here.  相似文献   

5.
Hsp90 encodes a ubiquitous molecular chaperone protein conserved among species which acts on multiple substrates, many of which are important cell-signaling proteins. Inhibition of Hsp90 function has been promoted as a mechanism to degrade client proteins involved in tumorigenesis and disease progression. Several assays to monitor inhibition of Hsp90 function currently exist but are limited in their use for a drug discovery campaign. Using data from the crystal structure of an initial hit compound, we have developed a fluorescence polarization assay to monitor binding of compounds to the ATP-binding site of Hsp90. This assay is very robust (Z' > 0.9) and can detect affinity of compounds with IC50s to 40 nM. We have used this assay in conjunction with cocrystal structures of small molecules to drive a structure-based design program aimed at the discovery and optimization of a novel class of potent Hsp90 inhibitors.  相似文献   

6.
Previously, we have demonstrated that the renaturation of heat denatured firefly luciferase is dependent upon the activity of Hsp90 in rabbit reticulocyte lysate. Here, we demonstrate that this assay may identify inhibitors that obstruct the chaperone activity of Hsp90 either by direct binding to its N-terminal or C-terminal nucleotide binding sites or by interference with the ability of the chaperone to switch conformations. The assay was adapted and optimized for high-throughput screening. Greater than 20,000 compounds were screened to demonstrate the feasibility of using this assay on a large scale. The assay was reproducible (av Z-factor=0.62) and identified 120 compounds that inhibited luciferase renaturation by greater than 70% at a concentration of 12.5 microg/mL. IC50 values for twenty compounds with varying structures were determined for inhibition of luciferase refolding and in cell-based assays for Hsp90 inhibition. Several compounds had IC50 values <10 microM and represent a number of new lead structures with the potential for further development and optimization as potent Hsp90 inhibitors.  相似文献   

7.
In the last decade the heat shock protein 90 (Hsp90) has emerged as a major therapeutic target and many efforts have been dedicated to the discovery of Hsp90 inhibitors as new potent anticancer agents. Here we report the identification of a novel class of Hsp90 inhibitors by means of a biophysical FAXS-NMR based screening of a library of fragments. The use of X-ray structure information combined with modeling studies enabled the fragment evolution of the initial triazoloquinazoline hit to a class of compounds with nanomolar potency and drug-like properties suited for further lead optimization.  相似文献   

8.
Information from X-ray crystal structures of Hsp90 inhibitors bound to the human Hsp90 molecular chaperone was used to assist in the design of 3-(5-chloro-2,4-dihydroxyphenyl)-pyrazole-4-carboxamides as novel inhibitors of Hsp90. Accessing an extra interaction with the protein via Phe138 gave a significant increase in binding potency compared to similar analogues that do not make this interaction.  相似文献   

9.
Synthesis of Hsp90 inhibitor dimers as potential antitumor agents   总被引:1,自引:0,他引:1  
Structure-based drug design was used to systematically synthesize PU3-dimers. The cytotoxicity of PU3 dimers 6 against breast cancer cell lines was evaluated, and their potency increased as the length of the bridging linker increased. Among the compounds tested, 6e with a C-20 linker was the most potent and exhibited a 20- to 30-fold increase in activity compared with that of the parent compound 5. Western blot analyses of the cell lysates treated with 6c revealed that 6c resulted in the concentration-dependent degradation of the Hsp90 client protein Her2, which is consistent with other Hsp90 inhibitors.  相似文献   

10.
Eight selected sulfonamide drugs were investigated as inhibitors of heat shock protein 90 (Hsp90). The investigation included simulated docking experiments to fit the selected compounds within the binding pocket of Hsp90. The selected molecules were found to readily fit within the ATP-binding pocket of Hsp90 in low-energy poses. The sulfonamides torsemide, sulfathiazole, and sulfadiazine were found to inhibit the ATPase activity of Hsp90 with IC(50) values of 1.0, 2.6, and 1.5 μM, respectively. Our results suggest that these well-established sulfonamides can be good leads for subsequent optimization into potent Hsp90 inhibitors.  相似文献   

11.
Here, we report on the development of a novel methodology to aid in design of Hsp90 inhibitors, using molecular docking combined with artificial neural network (ANN) modelling. Inhibitors are first docked into the ATPase site of the Human Hsp90α crystal structures and the thermodynamic properties of the complexes together with various physical-chemical properties of the ligands are used as input to train a simple feed-forward, back propagation ANN, to predict the inhibitors' pIC(50)s. For an objective test set of 60 known Hsp90 inhibitors for which there are no crystallographic data available, the trained ANN is shown to give pIC(50)s accurate to within ±1 log unit, and the predictions are sufficiently good as to allow the majority of the inhibitors to be ranked correctly according to their potency.  相似文献   

12.
Inhibitors of the Hsp90 molecular chaperone are showing promise as anti-cancer agents. Here we describe a series of 4-aryl-5-cyanopyrrolo[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors that were identified following structure-driven optimization of purine hits revealed by NMR based screening of a proprietary fragment library. Ligand-Hsp90 X-ray structures combined with molecular modeling led to the rational displacement of a conserved water molecule leading to enhanced affinity for Hsp90 as measured by fluorescence polarization, isothermal titration calorimetry and surface plasmon resonance assays. This displacement was achieved with a nitrile group, presenting an example of efficient gain in binding affinity with minimal increase in molecular weight. Some compounds in this chemical series inhibit the proliferation of human cancer cell lines in vitro and cause depletion of oncogenic Hsp90 client proteins and concomitant elevation of the co-chaperone Hsp70. In addition, one compound was demonstrated to be orally bioavailable in the mouse. This work demonstrates the power of structure-based design for the rapid evolution of potent Hsp90 inhibitors and the importance of considering conserved water molecules in drug design.  相似文献   

13.
Eight selected sulfonamide drugs were investigated as inhibitors of heat shock protein 90 (Hsp90). The investigation included simulated docking experiments to fit the selected compounds within the binding pocket of Hsp90. The selected molecules were found to readily fit within the ATP-binding pocket of Hsp90 in low-energy poses. The sulfonamides torsemide, sulfathiazole, and sulfadiazine were found to inhibit the ATPase activity of Hsp90 with IC50 values of 1.0, 2.6, and 1.5 μM, respectively. Our results suggest that these well-established sulfonamides can be good leads for subsequent optimization into potent Hsp90 inhibitors.  相似文献   

14.
Mechanisms to reduce the cellular levels of mutant huntingtin (mHtt) provide promising strategies for treating Huntington disease (HD). To identify compounds enhancing the degradation of mHtt, we performed a high throughput screen using a hippocampal HN10 cell line expressing a 573-amino acid mHtt fragment. Several hit structures were identified as heat shock protein 90 (Hsp90) inhibitors. Cell treatment with these compounds reduced levels of mHtt without overt toxic effects as measured by time-resolved Förster resonance energy transfer assays and Western blots. To characterize the mechanism of mHtt degradation, we used the potent and selective Hsp90 inhibitor NVP-AUY922. In HdhQ150 embryonic stem (ES) cells and in ES cell-derived neurons, NVP-AUY922 treatment substantially reduced soluble full-length mHtt levels. In HN10 cells, Hsp90 inhibition by NVP-AUY922 enhanced mHtt clearance in the absence of any detectable Hsp70 induction. Furthermore, inhibition of protein synthesis with cycloheximide or overexpression of dominant negative heat shock factor 1 (Hsf1) in HdhQ150 ES cells attenuated Hsp70 induction but did not affect NVP-AUY922-mediated mHtt clearance. Together, these data provided evidence that direct inhibition of Hsp90 chaperone function was crucial for mHtt degradation rather than heat shock response induction and Hsp70 up-regulation. Co-immunoprecipitation experiments revealed a physical interaction of mutant and wild-type Htt with the Hsp90 chaperone. Hsp90 inhibition disrupted the interaction and induced clearance of Htt through the ubiquitin-proteasome system. Our data suggest that Htt is an Hsp90 client protein and that Hsp90 inhibition may provide a means to reduce mHtt in HD.  相似文献   

15.
Hsp90 inhibitors such as geldanamycin potently induce Hsp70 and reduce cytotoxicity due to α-synuclein expression, although their use has been limited due to toxicity, brain permeability, and drug design. We recently described the effects of a novel class of potent, small molecule Hsp90 inhibitors in cells overexpressing α-synuclein. Screening yielded several candidate compounds that significantly reduced α-synuclein oligomer formation and cytotoxicity associated with Hsp70 induction. In this study we examined whether chronic treatment with candidate Hsp90 inhibitors could protect against α-synuclein toxicity in a rat model of parkinsonism. Rats were injected unilaterally in the substantia nigra with AAV8 expressing human α-synuclein and then treated with drug for approximately 8 weeks by oral gavage. Chronic treatment with SNX-0723 or the more potent, SNX-9114 failed to reduce dopaminergic toxicity in the substantia nigra compared to vehicle. However, SNX-9114 significantly increased striatal dopamine content suggesting a positive neuromodulatory effect on striatal terminals. Treatment was generally well tolerated, but higher dose SNX-0723 (6–10 mg/kg) resulted in systemic toxicity, weight loss, and early death. Although still limited by potential toxicity, Hsp90 inhibitors tested herein demonstrate oral efficacy and possible beneficial effects on dopamine production in a vertebrate model of parkinsonism that warrant further study.  相似文献   

16.
High-throughput screening of a library of diverse molecules has identified the 1,4-naphthoquinone scaffold as a new class of Hsp90 inhibitors. The synthesis and evaluation of a rationally-designed series of analogues containing the naphthoquinone core scaffold has provided key structure–activity relationships for these compounds. The most active inhibitors exhibited potent in vitro activity with low micromolar IC50 values in anti-proliferation and Her2 degradation assays. In addition, 3g, 12, and 13a induced the degradation of oncogenic Hsp90 client proteins, a hallmark of Hsp90 inhibition. The identification of these naphthoquinones as Hsp90 inhibitors provides a new scaffold upon which improved Hsp90 inhibitors can be developed.  相似文献   

17.
Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone required for the stability and function of a number of client proteins, many of which are involved in cancer development. The natural products geldanamycin (GM) and radicicol (RD) are known inhibitors of Hsp90, and their derivatives are being developed for the treatment of various cancers. To identify novel Hsp90 inhibitors, a highly robust time-resolved fluorescence resonance energy transfer (TR-FRET)-based HTS assay that measures the binding of biotinylated geldanamycin (biotin-GM) to the His-tagged human Hsp90 N-terminal ATP-binding domain (Hsp90N) was developed. This assay was optimized in 1536-well plates and was used as the primary assay to screen 10(6) compounds. Identified "hits" were then confirmed in a scintillation proximity assay (SPA) and a DEAE membrane-based assay for [(3)H]AAG binding to Hsp90. In addition, a surface plasmon resonance (SPR) assay that measures the direct interaction of Hsp90 with its inhibitors was developed and used to further characterize the identified inhibitors. Several potent and reversible inhibitors of human Hsp90 with K(d) values measured in the high nanomolar range were identified.  相似文献   

18.
The molecular chaperone Hsp90 plays important roles in maintaining malignant phenotypes. Recent studies suggest that Hsp90 exerts high-affinity interactions with multiple oncoproteins, which are essential for the growth of tumor cells. As a result, research has focused on finding Hsp90 probes as potential and selective anticancer agents. In a high-throughput screening exercise, we identified quinoline 7 as a moderate inhibitor of Hsp90. Further hit identification, SAR studies, and biological investigation revealed several synthetic analogs in this series with micromolar activities in both fluorescent polarization (FP) assay and a cell-based Western blot (WB) assay. These compounds represent a new class of Hsp90 inhibitors with simple chemical structures.  相似文献   

19.
A potential therapeutic strategy for targeting cancer that has gained much interest is the inhibition of the ATP binding and ATPase activity of the molecular chaperone Hsp90. We have determined the structure of the human Hsp90α N-terminal domain in complex with a series of 5-aryl-4-(5-substituted-2-4-dihydroxyphenyl)-1,2,3-thiadiazoles. The structures provide the molecular details for the activity of these inhibitors. One of these inhibitors, ICPD 34, causes a structural change that affects a mobile loop, which adopts a conformation similar to that seen in complexes with ADP, rather than the conformation generally seen with the pyrazole/isoxazole-resorcinol class of inhibitors. Competitive binding to the Hsp90 N-terminal domain was observed in a biochemical assay, and these compounds showed antiproliferative activity and induced apoptosis in the HCT116 human colon cancer cell line. These inhibitors also caused induction of the heat shock response with the upregulation of Hsp72 and Hsp27 protein expression and the depletion of Hsp90 clients, CRAF, ERBB2 and CDK4, thus confirming that antiproliferative activity was through the inhibition of Hsp90. The presence of increased levels of the cleavage product of PARP indicated apoptosis in response to Hsp90 inhibitors. This work provides a framework for the further optimization of thiadiazole inhibitors of Hsp90. Importantly, we demonstrate that the thiadiazole inhibitors display a more limited core set of interactions relative to the clinical trial candidate NVP-AUY922, and consequently may be less susceptible to resistance derived through mutations in Hsp90.  相似文献   

20.
Owing to the key role of heat-shock protein 90 (Hsp90) in the evolution, development and disease pathogenesis of cancer, it has been an important target for anti-cancer chemotherapy over the years. A five-nanosecond molecular dynamics simulation combined with the calculation of the binding free energy was carried out to investigate the binding mechanisms of three Hsp90 inhibitors 4BH, 2E1 and 2D9 to Hsp90. The binding free energy of each complex was computed using the molecular mechanics–generalised Born surface area method. Detailed binding free energies between each inhibitor and residues of Hsp90 were calculated using a per-residue basis decomposition method. The detailed inhibitor–residue interaction provides insights into binding mechanisms and in-depth understanding of the structure–affinity relationship. This study suggests that van der Waals energy is primarily responsible for driving the binding of the inhibitors to Hsp90, and the three inhibitors bind to Hsp90 in a similar binding mode. However, a substituent in 2D9 leads to higher binding free energy than the other two inhibitors. These data may assist in designing new potent drugs to combat cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号