首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel variant of soybean Kunitz trypsin inhibitor (SKTI) was detected in 530 lines of wild soybean (Glycine soja). This variant showed an intermediate electrophoretic mobility between the Tia and Tic types. In isoelectric focusing polyacrylamide gel electrophoresis gels containing urea, this variant had a similar isoelectric point as that of Tia. The genetic analysis of SKTI bands in F2 seeds from crosses of the new variant type with Tia or Tic type showed that this variant type is controlled by a codominant allele at the SKTI locus. We propose the genetic symbol Tif for this novel variant. When the nucleotide sequence of the Tif gene was compared with those of other types of SKTI genes (Tia, Tib, and Tic), the sequence of Tif was identical to that of Tib with the exception of one A-->G transitional mutation occurring at position 676 of Tif. This mutation resulted in an amino acid change from Lys to Glu at the 178 residue. These results suggest that this variant is derived from Tib through a point mutation. In addition, we settled an inconsistency in the number of amino acid differences between Tia and Tib (eight or nine). Analysis of nucleotide and amino acid sequences revealed that Tib was different from Tia by nine amino acids.  相似文献   

2.
Soybean Kunit trypsin inhibitor (SKTI) has several polymorphic types. Of these SKTI, there are large differences of nine amino acid substitutions between Tia and Tib. So far no transitional type between them has been found. A novel transitional intermediate variant between Tia and Tib was detected in 11 lines from 720 Japanese wild soybeans (Glycine soja Sieb. & Zucc.). This variant showed identical electrophoretic mobility to Tib in the Davis system polyacrylamide gel electrophoresis (PAGE), but higher electric points than other SKTI proteins (Tia, Tib, Tic) in isoelectric focusing PAGE. The genetic analysis of SKTI in F2 seeds from a cross between the novel variant type and Tib showed that this variant type is inherited as codominant alleles in a multiple allelic system at an SKTI locus. This variant also showed inhibitory activity to trypsin. We propose the genetic symbol Ti b i5 for this novel variant. The sequence analysis of Tib i5 revealed that six nucleotides were different between Tib i5 and Tia, and the nucleotides of these mutated positions were identical to Tib. This causes substitution of five amino acids at the residue position 62 (Tyr→Phe), 74 (Ser→Arg), 114 (Met→Val), 120 (Leu→Ile) and 137 (Pro→Thr). These substitutive amino acids are completely in accord with the amino acids of Tib, showing that Tib i5 is an intermediate between Tia and Tib types. Tib i5 type is widely distributed throughout seven separate areas from northeast to southwest Japan with a 1.5% frequency of total materials examined. This indicated that Tib i5 type did not originate from a recent mutation event, but had spread in wild soybean from ancient times.  相似文献   

3.
Lee KJ  Kim JB  Ha BK  Kim SH  Kang SY  Lee BM  Kim DS 《Amino acids》2012,43(1):379-388
The soybean Kunitz trypsin inhibitor (KTi) has several polymorphic variants. Of these, Tia and Tib, which differ by nine amino acids, are the two main types. In this study, differences in KTi proteome between Tia and Tib were investigated using three soybean cultivars and three mutant lines. Two cultivars, Baekwoon (BW) and Paldal (PD), and one mutant line, SW115-24, were Tia type, whereas one soybean cultivar, Suwon115 (SW115), and two mutant lines, BW-7-2 and PD-5-10, were Tib type. Protein from the six soybean lines was extracted and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), non-denaturing polyacrylamide gel electrophoresis (non-denaturing PAGE), and two-dimensional polyacrylamide gel electrophoresis (2-DE). By SDS-PAGE, there was no difference between soybean cultivars and mutant lines, except for SW115-24. Western blot analysis revealed that, in comparison with Tia, Tib type accumulated relatively low amounts of KTi. By non-denaturing PAGE, the three soybean lines of Tib type were characterized by slower mobility than the three soybean lines of Tia type. Zymography detected eight distinct zones of trypsin inhibitory activity among which Tia and Tib lacked the fifth and sixth zone, respectively. By two-dimensional native polyacrylamide gel electrophoresis (2-DN), the spots related to trypsin inhibitory activity showed different mobilities, whereas only one KTi (21.5?kDa) spot was resolved by 2-DE. By two-dimensional zymography (2-DZ), Tib showed a broader activity zone (pI 4-7) in comparison with Tia (pI 4-5). The results indicate that the genotypes with a different type of KTi present different proteomic profiles and trypsin inhibitory activities.  相似文献   

4.
The wild soybean (Glycine soja), which is the progenitor of cultivated soybean (Glycine max), is expected to offer more information about genetic variability and more useful mutants for evolutionary research and breeding applications. Here, a total of 1,600 wild soybean samples from China were investigated for genetic variation with regard to the soybean Kunitz trypsin inhibitor (SKTI). A new mutant SKTI, Tik, was identified. It was found to be a Tia-derived codominant allele caused by a transversion point mutation from C to G at nucleotide +171, leading to an alteration of one codon (AAC → AAG) and a corresponding amino acid substitution (Asn → Lys) at the ninth residue. Upon examination of this variant and others previously found in wild soybeans, it became clear that SKTI has undergone high-level evolutionary differentiation. There were more abundant polymorphisms in the wild than in the cultivated soybean.  相似文献   

5.
The Kunitz trypsin inhibitor (KTi) in soybean has several polymorphic types that are controlled by multiple alleles, which behave in a co-dominant fashion. Of these, Tia and Tib, which differ by nine amino acids, are the predominant types. In order to develop a single nucleotide amplified polymorphism (SNAP) marker for the classification of the predominant KTi types, Tia and Tib, and evaluate KTi activities by differing KTi type total 451 soybean mutant lines (M12–M16 generation) were incorporated in this study. Among 451 soybean mutants, 144 and 13 mutant lines showed decreased and increased trypsin inhibitor activity when compared with the original cultivars, respectively. To identify the KTi type, we designed a SNAP marker. Among 451 mutant lines from 12 soybean cultivars and landraces, 8 mutant lines derived from cvs. Baekwoon, Paldal and Suwon115 showed a change in KTi type when compared with the original cultivars using the SNAP marker. Five mutant lines in Suwon115 changed from Tib to Tia, while two mutant lines derived from cv. Baekwoon and one mutant line derived from cv. Paldal were changed from Tia to Tib. These changes of KTi types were confirmed by sequencing of the KTi genes and non-denaturing polyacrylamide gel electrophoresis of the KTi proteins. To identify the effect of KTi activity based on the change in KTi type, we measured the KTi activity using the three cultivars and eight mutant lines that showed changes in KTi type. Two mutant lines (BW-1 and 7-2) derived from cv. Baekwoon and one mutant line (PD-5-10) from cv. Paldal that changed from Tia to Tib showed lower activity than the original cultivar. In cv. Suwon115, five mutant lines that changed from Tib to Tia showed higher activity than the original cultivar. These results indicate that the designed SNAP marker was capable of identifying the KTi type and that Tia activity was higher than Tib activity in soybean.  相似文献   

6.
Singly modified soybean trypsin inhibitors (STIs), Tia* [Tia cleaved at Arg(63)-Ile(64)] and Tib* [Tib cleaved at Arg(63)-Ile(64)], were prepared by limited proteolysis with trypsin at pH 3.0. These singly modified inhibitors were further modified to yield doubly modified inhibitors, Tia** and Tib**, by limited proteolysis with subtilisin BPN', which cleaved the Met(84)-Leu(85) bonds of Tia* and Tib*, respectively. The doubly modified inhibitors could be separated into two parts: protein moiety A and peptide moiety a (IRFIAEGHPLSLKFDS-FAVIM) for Tia**, and protein moiety B and peptide moiety b (IRFIAEGNPLRLKFDS-FAVIM) for Tib**. These protein and peptide moieties showed no trypsin inhibitory activities alone. However, the inhibitors can be reconstituted through the mutual exchange of the protein and peptide moieties isolated from STIs. The reconstituted inhibitor which has tyrosine at position 62 and histidine at position 71 shows the highest inhibitory activity. Its Ki value for bovine trypsin is around 10(-10) M, which is almost the same as that of Tia for bovine trypsin. The inhibitor possessing either tyrosine at position 62 or histidine at position 71 exhibits a Ki value of around 10(-9) M, which is between those of Tia and Tib. The inhibitor having phenylalanine and asparagine at positions 62 and 71, respectively, shows the weakest inhibitory activity of around 10(-8) M similar to that of Tib for bovine trypsin.  相似文献   

7.
The amino acid sequences of three variants of the Kunitz-type trypsin inhibitors, Tia, Tib, and Tic, obtained from some cultivars of soybean were determined by conventional methods. All three inhibitors consisted of 181 amino acid residues. The differences in the amino acid sequences are as follows: Tia E12 G55 Y62 H71 S74 M114 L120 P137 L176; Tib S F N R V I T V; Tic E. The amino acid sequences of Pro(60)-Ser(61) and Asp(154)-Asp(155)-Gly(156)-His(157) of Tia reported previously (Koide & Ikenaka (1973) Eur. J. Biochem. 32, 417-431) were amended to Ser(60)-Pro(61) and His(154)-Asp-Asp-Gly(157), respectively.  相似文献   

8.
Engineered RNase P ribozymes are promising gene-targeting agents that can be used in both basic research and clinical applications. We have previously selected ribozyme variants for their activity in cleaving an mRNA substrate from a pool of ribozymes containing randomized sequences. In this study, one of the variants was used to target the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1 (HSV-1). The variant exhibited enhanced cleavage and substrate binding and was at least 30 times more efficient in cleaving TK mRNA in vitro than the ribozyme derived from the wild type sequence. Our results provide the first direct evidence to suggest that a point mutation at nucleotide 95 of RNase P catalytic RNA from Escherichia coli (G(95) --> U(95)) increases the rate of cleavage, whereas another mutation at nucleotide 200 (A(200) --> C(200)) enhances substrate binding of the ribozyme. A reduction of about 99% in TK expression was observed in cells expressing the variant, whereas a 70% reduction was found in cells expressing the ribozyme derived from the wild type sequence. Thus, the RNase P ribozyme variant is highly effective in inhibiting HSV-1 gene expression. Our study demonstrates that ribozyme variants increase their cleavage activity and efficacy in blocking gene expression in cells through enhanced substrate binding and rate of cleavage. These results also provide insights into the mechanism of how RNase P ribozymes efficiently cleave an mRNA substrate and, furthermore, facilitate the development of highly active RNase P ribozymes for gene-targeting applications.  相似文献   

9.
The diversity and maternal lineage in wild and cultivated soybeans have previously been assayed using restriction fragment length polymorphism (RFLP) and sequencing analyses of chloroplast DNA (cpDNA). Here we describe a method based on PCR-RFLP for the identification of nucleotides at four mutation sites in non-coding regions of cpDNA. Of the four sites, two were located in restriction enzyme sites and two were not. For the latter two sites, new primers were designed to artificially create restriction sites that spanned them. The PCR-RFLP method enabled us to identify nucleotides at each of the four mutation sites easily and reliably. Fifty-seven wild and sixty-seven cultivated soybeans of different origins and different cpDNA types (types I, II, and III) were assayed. All of the samples tested could be classified into four haplotypes. All of the type-I and -II accessions had the same nucleotides at each of the four mutation sites, while all of the type-III accessions, except for 3 wild ones, had nucleotides that were different from those of types I and II. A sequencing analysis revealed that the 3 wild accessions possessed other single-base variations in the non-coding regions of trnH-psbA and trnT-trnL. The results of this study suggest that the type-I and type-II chloroplast genomes form a group that is distinct from the type-III chloroplast genome. Received: 14 April 2000 / Accepted: 11 July 2000  相似文献   

10.
11.
In order to exploit the genetic resources of wild soybean (Glycine soja) which is the progenitor of cultivated soybean (Glycine max), the genic frequencies of Ti (coding trypsin inhibitors) and Sp1 (coding β-amylase isozymes) for 13 populations of wild soybean in Beijing region were determined. There are 2 alleles (Tia and Tib) in Ti locus of Beijing populations. Calculation of heterozygosity indicates Sp1 is polymorphic, while this monomorphic within a population. Based on the vatiation (from 0 to 50%) for heterozygosity of Sp1 among populations, with special reference to the values of genetic distances among populatious, and no heterozygote has been found in 1300 plants which would be heterozygotes if they were outbreeder, we suggested that wild soybean in natural populations is absolute inbreeder. The frequencies of Ti and Sp1 alleles vary from place to place extremely, however, no correlation exists between allozyme frequencies and ecological factors. Field investigation has shown that there is a threat from the reduction in available habitats, caused by building irrigation works .and urbanization. Finally, sampling strategy for conservation of genetic resources of wild soybean was discussed and some suggestions were made.  相似文献   

12.
The subtype- and splice variant-specific modulation of inositol 1,4,5-trisphosphate receptors (InsP3R) by interaction with cellular factors plays a fundamental role in defining the characteristics of Ca2+ release in individual cell types. In this study, we investigate the binding properties and functional consequences of the expression of a putative nucleotide binding fold (referred to as the ATPC site) unique to the S2- splice variant of the type-1 InsP3R (InsP3R-1), the predominant splice variant in peripheral tissue. A glutathione S-transferase fusion protein encompassing amino acids 1574-1765 of the S2- InsP3R-1 and including the glycine-rich motif Gly-Tyr-Gly-Glu-Lys-Gly bound ATP specifically as measured by fluorescent trinitrophenyl-ATP binding. This binding was completely abrogated by a point mutation (G1690A) in the nucleotide binding fold. The functional sensitivity of S2- InsP3R-1 constructs was evaluated in DT40-3KO-M3 cells, a null background for InsP3R, engineered to express muscarinic M3 receptors. The S2- InsP3R-1 containing the G1690A mutation was markedly less sensitive to agonist stimulation than wild type S2- InsP3R-1 or receptors containing a similar (Gly --> Ala) mutation in the established nucleotide binding sites in InsP3R-1 (the ATPA and ATPB sites). The ATP sensitivity of InsP3-induced Ca2+ release, however, was not altered by the G1690A mutation when measured in permeabilized DT40-3KO cells, suggesting a unique role for the ATPC site. Ca2+ release was dramatically potentiated following activation of cAMP-dependent protein kinase in DT40-3KO cells transiently expressing wild type S2- InsP3R or Gly --> Ala mutations in the ATPA and ATPB sites, but phosphorylation of the receptor and the potentiation of Ca2+ release were absent in cells expressing the G1690A mutation in S2- InsP3R. These data indicate that ATP binding specifically to the ATPC site in S2- InsP3R-1 controls the susceptibility of the receptor to protein kinase A-mediated phosphorylation, contributes to the functional sensitivity of the S2- InsP3R-1 and ultimately the sensitivity of cells to agonist stimulation.  相似文献   

13.
Forty-one wild types and 41 cultivars of common bean (Phaseolus vulgaris) from Meso-and South America were screened for variability of phaseolin seed protein using one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) and two-dimensional isoelectric focusing SDS/PAGE. Wild accessions from the Andean region showed phaseolin types which had not been previously identified in wild material from that region. Other wild accessions from Argentina exhibited novel phaseolin patterns collectively designated as ‘J’ (‘Jujuy’) phaseolin types, and one accession from northern Peru exhibited a novel phaseolin type, the ‘I’ (‘Inca’) type. The ‘H’ and ‘C’ phaseolins, previously identified only in cultivars, were observed in several wild accessions from Argentina. Among cultivars, two minor variants of the ‘S’ phaseolin type were identified. The ‘Sb’ (‘S Brazil’) was characteristic of a limited number of cultivars from Brazil whereas the ‘Sd’ (‘S Durango 222’) predominated in cultivars of the Mexican central highlands. The distribution of the previously described ‘B’ phaseolin appeared to be larger than formerly known as it extended not only in Colombia but also in Central America. It is possible to correlate the ‘Sb’, ‘Sd’, and ‘B’ phaseolin types with certain agronomic traits.  相似文献   

14.
An in vitro selection procedure was used to select RNase P ribozyme variants that efficiently cleaved the sequence of the mRNA encoding thymidine kinase of herpes simplex virus 1. Of the 45 selected variants sequenced, 25 ribozymes carried a common mutation at nucleotides 224 and 225 of RNase P catalytic RNA from Escherichia coli (G(224)G(225) --> AA). These selected ribozymes exhibited at least 10 times higher cleavage efficiency (k(cat)/K(m)) than that derived from the wild type ribozyme. Our results suggest that the mutated A(224)A(225) are in close proximity to the substrate and enhance substrate binding of the ribozyme. When these ribozyme variants were expressed in herpes simplex virus 1-infected cells, the levels of thymidine kinase mRNA and protein were reduced by 95-99%. Our study provides the first direct evidence that RNase P ribozyme variants isolated by the selection procedure can be used for the construction of gene-targeting ribozymes that are highly effective in tissue culture. These results demonstrate the potential for using RNase P ribozymes as gene-targeting agents against any mRNA sequences, and using the selection procedure as a general approach for the engineering of RNase P ribozymes.  相似文献   

15.
H1 histones from rat liver and rat testis were separated by reverse-phase h.p.l.c. Within 40 min six subfractions (H1(0), H1b, H1a, H1d, H1e + H1c and H1c) and seven subfractions (H1(0), H1b, H1a, H1d, H1e + H1c, H1c and H1t) respectively were isolated by using a linear acetonitrile gradient. Each individual H1 subtype was identified either by comparing the H1 variants (contained in both tissues but in different quantities) or by SDS/PAGE and acetic acid/urea/PAGE. Moreover, all H1 variants were characterized by amino acid analyses. The amino acid compositions of rat histone subfractions H1(0), H1b and H1e were determined for the first time. It was possible to classify unambiguously the H1 subfractions obtained by h.p.l.c. by following the standardized H1 nomenclature for electrophoretic systems recommended by Lennox, Oshima & Cohen [(1982) J. Biol. Chem. 257, 5183-5189]. Incorrect assignments that have been made in various publications are discussed.  相似文献   

16.
The pharmacokinetics of 17 genetic variants of human serum albumin with single-residue mutations and their corresponding normal albumin were studied in mice. In all cases, the plasma half-life was affected, but only variants with + 2 changes in charge prolonged it, whereas changes in hydrophobicity decreased it. Good positive and negative correlations were found between changes in α-helical content taking place in domains I + III and domain II, respectively, and changes in half-lives. No correlation was found to type of mutation or to changes in heat stability as represented by ΔHv. Liver and kidney uptake clearances were also modified: α-helical changes of domains I + III showed good negative correlations to both types of clearances, whereas changes in domain II only had a good positive correlation to kidney uptake clearance. No correlation between the other molecular changes and organ uptakes was observed. The relatively few correlations between changes in molecular characteristics and the organ uptakes of the variants are most probably due to different handling by plasma enzyme(s) and the various types of cell endocytosis. Of the latter, most lead to destruction of albumin, but at least one results in recycling of the protein. The present information should be useful when designing recombinant, therapeutical albumins or albumin products with a modified plasma half-life.  相似文献   

17.

Background and Aims

It is essential to illuminate the evolutionary history of crop domestication in order to understand further the origin and development of modern cultivation and agronomy; however, despite being one of the most important crops, the domestication origin and bottleneck of soybean (Glycine max) are poorly understood. In the present study, microsatellites and nucleotide sequences were employed to elucidate the domestication genetics of soybean.

Methods

The genomes of 79 landrace soybeans (endemic cultivated soybeans) and 231 wild soybeans (G. soja) that represented the species-wide distribution of wild soybean in East Asia were scanned with 56 microsatellites to identify the genetic structure and domestication origin of soybean. To understand better the domestication bottleneck, four nucleotide sequences were selected to simulate the domestication bottleneck.

Key Results

Model-based analysis revealed that most of the landrace genotypes were assigned to the inferred wild soybean cluster of south China, South Korea and Japan. Phylogeny for wild and landrace soybeans showed that all landrace soybeans formed a single cluster supporting a monophyletic origin of all the cultivars. The populations of the nearest branches which were basal to the cultivar lineage were wild soybeans from south China. The coalescent simulation detected a bottleneck severity of K′ = 2 during soybean domestication, which could be explained by a foundation population of 6000 individuals if domestication duration lasted 3000 years.

Conclusions

As a result of integrating geographic distribution with microsatellite genotype assignment and phylogeny between landrace and wild soybeans, a single origin of soybean in south China is proposed. The coalescent simulation revealed a moderate genetic bottleneck with an effective wild soybean population used for domestication estimated to be ≈2 % of the total number of ancestral wild soybeans. Wild soybeans in Asia, especially in south China contain tremendous genetic resources for cultivar improvement.  相似文献   

18.
19.
A mutation (pde1) was detected by suppressor activity on the CYR3 mutation which caused cAMP requirement for growth at 35 degrees C by the alteration of cAMP-dependent protein kinase. The pde1 mutant produced a significantly reduced level of cyclic nucleotide phosphodiesterase activity when assayed with 500 microM cAMP. Two cyclic nucleotide phosphodiesterases, I and II, were identified. Approximate molecular weights of these enzymes were 60,000 and 110,000, and the apparent Km values were 100 and 0.4 microM, respectively. The pde1 mutant was deficient in phosphodiesterase I activity. The cells carrying the pde1 mutation accumulated several times over the intracellular cAMP found in wild type cells. Phosphodiesterase I was not essential for growth of yeast cells, but controlled the intracellular cAMP levels in wild type and various mutant strains.  相似文献   

20.
AimsMitochondria not only generate and modulate bioenergy but also serve as biosensors for oxidative stress, and eventually become effector organelles for cell viability. Therefore, the implications of mitochondrial (dys)function in the development of multiple organ failure are profound. We investigated whether a mutation in the ATPase subunit-8 gene affects the course of endotoxemic acute liver failure.Main methodsC57BL/6J (ATP8 wild type) and C57BL/6J-mtFVB/N (ATP8 mutant) mice were challenged with d-galactosamine (GalN) and Escherichia coli lipopolysaccharide (LPS) for induction of acute liver failure, and studied 6 h thereafter. Control mice received physiological saline only. Analysis included in vivo fluorescence microscopy of hepatic microcirculation and levels of hepatocellular apoptosis, hepatic adenosine nucleotides and oxidative stress. Additionally, survival rates were assessed.Key findingsInduction of endotoxemic liver failure provoked marked liver damage, which was coexistent with a drop of total adenosine nucleotide levels and increased oxidative stress. Of interest, oxidative stress was higher in the GalN/LPS challenged ATP8 mutants compared to wild types. Concomitantly, adenosine triphosphate (ATP) levels in livers of mice carrying the ATP8 mutation remained higher than those in wild type mice. As net result, ATP8 mutants showed lower transaminase release and a tendency to better survival rate upon GalN/LPS exposure compared to wild types.SignificanceOur findings demonstrate that mutation in the ATPase subunit-8 partially protects mice against endotoxemic stress, most probably due to better hepatic energy status despite elevated oxidative stress. Thus, modulating mitochondrial function to preserve bioenergetic status may be an effective strategy to protect against sepsis-induced multiorgan dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号