首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Developing cellular models of sporadic Alzheimer’s disease (sAD) is challenging due to the unknown initiator of disease onset and the slow disease progression that takes many years to develop in vivo. The use of human induced pluripotent stem cells (iPSCs) has revolutionised the opportunities to model AD pathology, investigate disease mechanisms and screen potential drugs. The majority of this work has, however, used cells derived from patients with familial AD (fAD) where specific genetic mutations drive disease onset. While these provide excellent models to investigate the downstream pathways involved in neuronal toxicity and ultimately neuronal death that leads to AD, they provide little insight into the causes and mechanisms driving the development of sAD. In this review we compare the data obtained from fAD and sAD iPSC-derived cell lines, identify the inconsistencies that exist in sAD models and highlight the potential role of Aβ clearance mechanisms, a relatively under-investigated area in iPSC-derived models, in the study of AD. We discuss the development of more physiologically relevant models using co-culture and three-dimensional culture of iPSC-derived neurons with glial cells. Finally, we evaluate whether we can develop better, more consistent models for sAD research using genetic stratification of iPSCs and identification of genetic and environmental risk factors that could be used to initiate disease onset for modelling sAD. These considerations provide exciting opportunities to develop more relevant iPSC models of sAD which can help drive our understanding of disease mechanisms and identify new therapeutic targets.  相似文献   

3.
Introduction. Huntington’s disease (HD) is a severe neurodegenerative disorder characterized by choreic hyperkinesis, cognitive decline, behavioral disorders, and progressive neuronal death, mostly in the striatum. Since HD is a fatal disorder, searching for efficient treatment methods, including those based on cell replacement therapy, is quite relevant. The experimental models of HD are used increasingly often. The objective of the study was to assess effectiveness and safety of transplantation of neuronal precursors differentiated from induced pluripotent stem cells (iPSCs) from a healthy donor into the striatum of rats with 3-NPAinduced HD model. Materials and methods. We studied the influence of neurotransplantation on the behavioral effects in rats with HD model induced by intrastriatal injection of 3-nitropropiotic acid (3-NPA). In the study group of animals (n = 11), human neuronal precursors derived from iPSCs of a healthy volunteer were transplanted into the caudate nuclei (5 × 105 per 5 μL of normal saline solution bilaterally); the control group of animals (n = 10) received normal saline solution. The animals were tested using the ANY-maze video tracking system; the parameters of the open-field test and the conditioned avoidance response test were evaluated. Results. An analysis of behavioral effects after transplantation demonstrated that introduction of neuronal iPSC derivatives into the caudate nuclei of rats with induced HD model was accompanied by recovery of locomotor activity of the animals (horizontal and vertical), as opposed to the control group. It was found when testing the reproducibility of the conditioned avoidance responses that the conditioned avoidance responses in control animals were weakened, whereas intrastriatal transplantation of neurons abruptly increased the latency of moving into the dark compartment of the chamber in the conditioned avoidance response test. Conclusions. The pilot experiment using the HD model showed that neurotransplantation using iPSC derivatives recovers the reduced locomotor activity in rats and improves memory trace keeping, which contributes to correction of locomotor and cognitive disorders induced by 3-NPA neurotoxin.  相似文献   

4.
Carter RL  Chan AW 《遗传学报》2012,39(6):253-259
Pluripotent cellular models have shown great promise in the study of a number of neurological disorders.Several advantages of using a stem cell model include the potential for cells to derive disease relevant neuronal cell types,providing a system for researchers to monitor disease progression during neurogenesis,along with serving as a platform for drug discovery.A number of stem cell derived models have been employed to establish in vitro research models of Huntington’s disease that can be used to investigate cellular pathology and screen for drug and cell-based therapies.Although some progress has been made,there are a number of challenges and limitations that must be overcome before the true potential of this research strategy is achieved.In this article we review current stem cell models that have been reported,as well as discuss the issues that impair these studies.We also highlight the prospective application of Huntington’s disease stem cell models in the development of novel therapeutic strategies and advancement of personalized medicine.  相似文献   

5.
6.
NF-κB signaling plays an essential role in maintaining the undifferentiated state of embryonic stem (ES) cells. However, opposing roles of NF-κB have been reported in mouse and human ES cells, and the role of NF-κB in human induced pluripotent stem (iPS) cells has not yet been clarified. Here, we report the role of NF-κB signaling in maintaining the undifferentiated state of human iPS cells. Compared with differentiated cells, undifferentiated human iPS cells showed an augmentation of NF-κB activity. During differentiation induced by the removal of feeder cells and FGF2, we observed a reduction in NF-κB activity, the expression of the undifferentiation markers Oct3/4 and Nanog, and the up-regulation of the differentiated markers WT-1 and Pax-2. The specific knockdown of NF-κB signaling using p65 siRNA also reduced the expression of Oct3/4 and Nanog and up-regulated WT-1 and Pax-2 but did not change the ES-like colony formation. Our results show that the augmentation of NF-κB signaling maintains the undifferentiated state of human iPS and suggest the importance of this signaling pathway in maintenance of human iPS cells.  相似文献   

7.
Studying pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD), requires adequate disease models. The available patient’s material is limited to biological fluids and post mortem brain samples. Disease modeling and drug screening can be done in animal models, although this approach has its own limitations, since laboratory animals do not suffer from many neurodegenerative diseases, including PD. The use of neurons obtained by targeted differentiation from induced pluripotent stem cells (iPSCs) with known genetic mutations, as well as from carriers of sporadic forms of the disease, will allow to elucidate new components of the molecular mechanisms of neurodegeneration. Such neuronal cultures can also serve as unique models for testing neuroprotective compounds and monitoring neurodegenerative changes against a background of various therapeutic interventions. In the future, dopaminergic neurons differentiated from iPSCs can be used for cell therapy of PD.  相似文献   

8.
9.

Background

The incidence of esophageal adenocarcinoma (EAC) has increased nearly five-fold over the last four decades in the United States. Barrett’s esophagus, the replacement of the normal squamous epithelial lining with a mucus-secreting columnar epithelium, is the only known precursor to EAC. Like other parts of the gastrointestinal (GI) tract, the esophagus hosts a variety of bacteria and comparisons among published studies suggest bacterial communities in the stomach and esophagus differ. Chronic infection with Helicobacter pylori in the stomach has been inversely associated with development of EAC, but the mechanisms underlying this association remain unclear.

Methodology

The bacterial composition in the upper GI tract was characterized in a subset of participants (n=12) of the Seattle Barrett’s Esophagus Research cohort using broad-range 16S PCR and pyrosequencing of biopsy and brush samples collected from squamous esophagus, Barrett’s esophagus, stomach corpus and stomach antrum. Three of the individuals were sampled at two separate time points. Prevalence of H. pylori infection and subsequent development of aneuploidy (n=339) and EAC (n=433) was examined in a larger subset of this cohort.

Results/Significance

Within individuals, bacterial communities of the stomach and esophagus showed overlapping community membership. Despite closer proximity, the stomach antrum and corpus communities were less similar than the antrum and esophageal samples. Re-sampling of study participants revealed similar upper GI community membership in two of three cases. In this Barrett’s esophagus cohort, Streptococcus and Prevotella species dominate the upper GI and the ratio of these two species is associated with waist-to-hip ratio and hiatal hernia length, two known EAC risk factors in Barrett’s esophagus. H. pylori-positive individuals had a significantly decreased incidence of aneuploidy and a non-significant trend toward lower incidence of EAC.  相似文献   

10.
Human Embryonic Stem cells (hESCs) and human induced Pluripotent Stem cells (hiPSCs) are commonly maintained on inactivated mouse embryonic fibroblast as feeder cells in medium supplemented with FBS or proprietary replacements. Use of culture medium containing undefined or unknown components has limited the development of applications for pluripotent cells because of the relative lack of knowledge regarding cell responses to differentiating growth factors. In addition, there is no consensus as to the optimal formulation, or the nature of the cytokine requirements of the cells to promote their self-renewal and inhibit their differentiation. In this study, we successfully generated hiPSCs from human dental pulp cells (DPCs) using Yamanaka''s factors (Oct3/4, Sox2, Klf4, and c-Myc) with retroviral vectors in serum- and feeder-free defined culture conditions. These hiPSCs retained the property of self-renewal as evaluated by the expression of self-renewal marker genes and proteins, morphology, cell growth rates, and pluripotency evaluated by differentiation into derivatives of all three primary germ layers in vitro and in vivo. In this study, we found that TGF-β1 increased the expression levels of pluripotency markers in a dose-dependent manner. However, increasing doses of TGF-β1 suppressed the growth rate of hiPSCs cultured under the defined conditions. Furthermore, over short time periods the hiPSCs cultured in hESF9 or hESF9T exhibited similar morphology, but hiPSCs maintained in hESF9 could not survive beyond 30 passages. This result clearly confirmed that hiPSCs cultured in hESF9 medium absolutely required TGF-β1 to maintain pluripotency. This simple serum-free adherent monoculture system will allow us to elucidate the cell responses to growth factors under defined conditions and can eliminate the risk might be brought by undefined pathogens.  相似文献   

11.
Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by expended CAG repeats in the Huntingtin (Htt) gene. The resultant mutant Htt (mHtt) forms aggregates in neurons and causes neuronal dysfunctions. The major characteristic of HD is the selective loss of neurons in the striatum and cortex, which leads to movement disorders, dementia, and eventual death. Expression of mHtt was also found in non-neuronal cells in the brain, suggesting non-cell-autonomous neurotoxicity in HD. As was documented in many different neurodegenerative disorders, elevated inflammatory responses are also reported in HD. To date, effective treatments for this devastating disease remain to be developed. This review focuses on the importance of glial cells and inflammation in HD pathogenesis. Potential anti-inflammatory interventions for HD are also discussed.  相似文献   

12.
13.
Alzheimer’s disease (AD) is characterized by the accumulation of amyloid plaques and neurofibrillary tangles accompanied by cognitive dysfunction. The aim of the present study was to elucidate preventive and therapeutic potential of stem cells for AD. Among stem cells, autologous human adipose-derived stem cells (hASCs) elicit no immune rejection responses, tumorigenesis, or ethical problems. We found that intravenously transplanted hASCs passed through the BBB and migrated into the brain. The learning, memory and pathology in an AD mouse model (Tg2576) mice greatly improved for at least 4 months after intravenous injection of hASC. The number of amyloid plaques and Aβ levels decreased significantly in the brains of hASC-injected Tg mice compared to those of Tg-sham mice. Here, we first report that intravenously or intracerebrally transplanted hASCs significantly rescues memory deficit and neuropathology, in the brains of Tg mice by up-regulating IL-10 and VEGF and be a possible use for the prevention and treatment of AD.  相似文献   

14.
BackgroundHepatocyte differentiation inducer (HDI) lacks both glucose and arginine, but is supplemented with galactose and ornithine, and is added together with other reagents such as apoptosis inhibitor and oncostatin M. Although human induced pluripotent stem (iPS) cells initiate hepatocyte differentiation, most die within 7 days. In this study, we investigated both HDI and conventional media for their potential to improve cell survival.ResultsExpression levels of α-feto protein (AFP) were higher in cells cultured in WE and in Dulbecco’s Modified Eagle’s Medium/Nutrient F-12 Ham (DF12). 201B7 cells expressed the highest AFP and albumin (ALB) when cultured in HDI for 2 days following 7-day culture in WE. After three cycles of 5-day culture in WE followed by 2 days in HDI, 201B7 cells expressed AFP and ALB 54 ± 2.3 (average ± standard deviation) and 73 ± 15.1 times higher, respectively, than those cultured in ReproFF (feeder-free condition).Conclusion201B7 cells survived culture in WE for 7 days followed HDI for 2 days. After three cycles of culture under these conditions, hepatocyte differentiation was enhanced, as evidenced by increased AFP and ALB expression.  相似文献   

15.
16.
There is much interest in the use of mesenchymal stem cells/marrow stromal cells (MSC) to treat neurodegenerative disorders, in particular those that are fatal and difficult to treat, such as Huntington's disease. MSC present a promising tool for cell therapy and are currently being tested in FDA-approved phase I-III clinical trials for many disorders. In preclinical studies of neurodegenerative disorders, MSC have demonstrated efficacy, when used as delivery vehicles for neural growth factors. A number of investigators have examined the potential benefits of innate MSC-secreted trophic support and augmented growth factors to support injured neurons. These include overexpression of brain-derived neurotrophic factor and glial-derived neurotrophic factor, using genetically engineered MSC as a vehicle to deliver the cytokines directly into the microenvironment. Proposed regenerative approaches to neurological diseases using MSC include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation, MSC in the brain promote endogenous neuronal growth, encourage synaptic connection from damaged neurons, decrease apoptosis, reduce levels of free radicals, and regulate inflammation. These abilities are primarily modulated through paracrine actions. Clinical trials for MSC injection into the central nervous system to treat amyotrophic lateral sclerosis, traumatic brain injury, and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of Huntington's disease is discussed.  相似文献   

17.
Huntington's disease (HD) is caused by an abnormal expansion of CAG trinucleotide repeats encoding polyglutamine (polyQ) in the first exon of the huntingtin (htt) gene. Despite considerable efforts, the pathogenesis of HD remains largely unclear due to a paucity of models that can reliably reproduce the pathological characteristics of HD. Here, we report a neuronal cell model of HD using the previously established tetracycline regulated rat neuroprogenitor cell line, HC2S2. Stable expression of enhanced green fluorescence protein tagged htt exon 1 (referred to as 28Q and 74Q, respectively) in the HC2S2 cells did not affect rapid neuronal differentiation. However, compared to the cells expressing wild type htt, the cell line expressing mutant htt showed an increase in time-dependent cell death and neuritic degeneration, and displayed increased vulnerability to oxidative stress. Increased protein aggregation during the process of neuronal aging or when the cells were exposed to oxidative stress reagents was detected in the cell line expressing 74Q but not in its counterpart. These results suggest that the neuroprogenitor cell lines mimic the major neuropathological characteristics of HD and may provide a useful tool for studying the neuropathogenesis of HD and for high throughput screening of therapeutic compounds.  相似文献   

18.
19.
20.
Parkinson’s disease is a common age-related progressive neurodegenerative disorder. Over the last 10 years, advances have been made in our understanding of the etiology of the disease with the greatest insights perhaps coming from genetic studies, including genome-wide association approaches. These large scale studies allow the identification of genomic regions harboring common variants associated to disease risk. Since the first genome-wide association study on sporadic Parkinson’s disease performed in 2005, improvements in study design, including the advent of meta-analyses, have allowed the identification of ~21 susceptibility loci. The first loci to be nominated were previously associated to familial PD (SNCA, MAPT, LRRK2) and these have been extensively replicated. For other more recently identified loci (SREBF1, SCARB2, RIT2) independent replication is still warranted. Cumulative risk estimates of associated variants suggest that more loci are still to be discovered. Additional association studies combined with deep re-sequencing of known genome-wide association study loci are necessary to identify the functional variants that drive disease risk. As each of these associated genes and variants are identified they will give insight into the biological pathways involved the etiology of Parkinson’s disease. This will ultimately lead to the identification of molecules that can be used as biomarkers for diagnosis and as targets for the development of better, personalized treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号