首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
ATP synthesis during exogenous NADH oxidation. A reappraisal   总被引:1,自引:0,他引:1  
This paper reports a reinvestigation on the pathway for mitochondrial oxidation of exogenous NADH and on the related ATP synthesis, first reported 30 years ago (Lehninger, A.L. (1951) J. Biol. Chem. 190, 345-359). NADH oxidation, both in intact and in water-treated mitochondria, is 90% inhibited by mersalyl, an inhibitor of the outer membrane NADH-cytochrome b5 reductase, and 10% inhibited by rotenone. The mersalyl-sensitive, but not the rotenone-sensitive, portion of NADH oxidation is stimulated by exogenous cytochrome c. Part of ATP synthesis is independent of exogenous NADH and cytochrome c, and is inhibited by rotenone and antimycin A, and is therefore due to oxidation of endogenous substrates. Another part of ATP synthesis is dependent on exogenous NADH and cytochrome c, is insensitive to rotenone and antimycin A, and is due to operation of cytochrome oxidase. It is concluded that (i) oxidation of exogenous NADH in the presence of cytochrome c proceeds mostly through NADH-cytochrome b5 reductase and cytochrome b5 on the outer membrane and then through cytochrome oxidase via the cytochrome c shuttle, and (ii) ATP synthesis during oxidation of exogenous NADH is partly due to oxidation of endogenous substrates and partly to operation of cytochrome oxidase receiving electrons from the outer membrane via cytochrome c.  相似文献   

4.
5.
6.
Km and Vmax values for platelet monoamine oxidase (MAO) were determined in 16 chronic schizophrenics and 18 controls utilizing three substrates, tyramine (TYR), benzylamine (BZ), and phenylethylamine (PEA). In the chronic schizophrenics decreased Km and Vmax values were found for TYR and BZ but not PEA. When prior neuroleptic drug exposure was considered, a trend toward lower kinetic parameters was found in schizophrenics with a history of prior neuroleptic usage. We conclude that platelet MAO activity is, in chronic schizophrenics, both quantitatively reduced and qualitatively different from control enzyme. We suggest that the measurement of Km in addition to the measurement of Vmax may be a useful biological marker for chronic schizophrenia providing that the appropriate substrates are employed.  相似文献   

7.
Biogenesis of respiratory chain complexes depends on the expression of mitochondrial-encoded subunits. Their synthesis occurs on membrane-associated ribosomes and is probably coupled to their membrane insertion. Defects in expression of mitochondrial translation products are among the major causes of mitochondrial disorders. Mdm38 is related to Letm1, a protein affected in Wolf-Hirschhorn syndrome patients. Like Mba1 and Oxa1, Mdm38 is an inner membrane protein that interacts with ribosomes and is involved in respiratory chain biogenesis. We find that simultaneous loss of Mba1 and Mdm38 causes severe synthetic defects in the biogenesis of cytochrome reductase and cytochrome oxidase. These defects are not due to a compromised membrane binding of ribosomes but the consequence of a mis-regulation in the synthesis of Cox1 and cytochrome b. Cox1 expression is restored by replacing Cox1-specific regulatory regions in the mRNA. We conclude, that Mdm38 and Mba1 exhibit overlapping regulatory functions in translation of selected mitochondrial mRNAs.  相似文献   

8.
The oxidative capacity of mammalian striated muscles can vary markedly over a nearly 10-fold range, reflecting major differences in the expression of genes that encode enzymes of oxidative metabolism, including genes located exclusively within mitochondrial DNA. To clarify the regulatory events that govern expression of mitochondrial genes in striated muscle, nucleic acid hybridization procedures employing cloned segments of mitochondrial DNA as probes were utilized to determine the concentrations of mitochondrial DNA, mitochondrial ribosomal RNA, and cytochrome b mRNA (a mitochondrial gene product) in rabbit striated muscles of markedly different oxidative capacities. When cardiac muscle and Type I (red, oxidative) skeletal muscle were compared to Type II (white, glycolytic) skeletal muscle, mitochondrial DNA, mitochondrial ribosomal RNA, and cytochrome b mRNA, each increased in direct proportion to increases in oxidative capacity. Furthermore, when the phenotypic characteristics of Type II skeletal muscle were altered by electrical stimulation in vivo, mitochondrial DNA, mitochondrial rRNA, and cytochrome b mRNA also increased proportionately with increases in oxidative capacity. These results indicate that the expression of mitochondrial genes in mammalian striated muscle is proportionate to their copy number, and support the hypothesis that amplification of the mitochondrial genome relative to chromosomal DNA is an important feature underlying enhanced expression of mitochondrial genes in highly oxidative tissues.  相似文献   

9.
10.
Apoptosis may be initiated in neurons via mitochondrial release of the respiratory protein, cytochrome c. The mechanism of cytochrome c release has been studied extensively, but little is known about its dynamics. It has been claimed that release is all-or-none, however, this is not consistent with accumulating evidence of cytosolic mechanisms for 'buffering' cytochrome c. This study has attempted to model an underlying disease pathology, rather than inducing apoptosis directly. The model adopted was diminished activity of the mitochondrial respiratory chain complex I, a recognized feature of Parkinson's disease. Titration of rat brain mitochondrial respiratory function, with the specific complex I inhibitor rotenone, caused proportional release of cytochrome c from isolated synaptic and non-synaptic mitochondria. The mechanism of release was mediated, at least in part, by the mitochondrial outer membrane component Bak and voltage-dependent anion channel rather than non-specific membrane rupture. Furthermore, preliminary data were obtained demonstrating that in primary cortical neurons, titration with rotenone induced cytochrome c release that was subthreshold for the induction of apoptosis. Implications for the therapy of neurodegenerative diseases are discussed.  相似文献   

11.
Mitochondria isolated from minute amounts (100-500 mg) of human skeletal muscle displayed a very high rotenone-resistant NADH cytochrome c reductase activity. Moreover, compared to succinate cytochrome c reductase activity, a low rate of rotenone-sensitive NADH cytochrome c reductase activity was measured when using standard procedures to disrupt mitochondrial membranes. Only a drastic osmotic shock in distillated water as a mean to disrupt mitochondrial membrane was found to strongly increase the actual rate of the rotenone-sensitive activity. This was accompanied by a decrease in the rotenone-insensitive activity. Using such a simple procedure, the NADH cytochrome c reductase was found 70-80% inhibited by rotenone and roughly equivalent to 70-85% of the activity of the succinate cytochrome c reductase.  相似文献   

12.
Abstract: Schizophrenics exhibit abnormalities in many memory-associated functions mediated by the frontal cortex. Glutamate receptors play key roles in learning and memory. Hence, abnormalities in glutamate receptors within the frontal cortex may be associated with schizophrenia. In addition, emerging evidence indicates that glutamate receptors may be involved in the actions of antipsychotic drugs. To test these hypotheses, we measured mRNAs encoding the NMDAR1, GluR1, GluR7, and KA1 subunits of glutamate receptor in the left superior frontal gyrus from 21 elderly schizophrenics with varying histories of antipsychotic drug treatment and nine normal drug-free elderly controls. There were significant negative correlations between NMDAR1, GluR1, GluR7, and KA1 mRNA levels and time without neuroleptic medication before death in schizophrenics, indicating that levels of the glutamate receptor mRNAs decline rapidly after drug withdrawal. Further analysis revealed that in "neuroleptic-free" (>6 months) schizophrenics, levels of NMDAR1, GluR1, GluR7, and KA1 mRNAs were significantly lower than in controls. By contrast, in schizophrenics who were receiving neuroleptics until death, levels of NMDAR1, GluR1, GluR7, and KA1 mRNAs did not differ significantly from controls. These findings indicate that decreased levels of NMDAR1, GluR1, GluR7, and KA1 mRNAs may be present in the frontal cortex of some schizophrenics and that typical neuroleptics may reversibly increase levels of these mRNAs.  相似文献   

13.
14.
15.
Using subtractive hybridization to identify genes that are androgen regulated in the mouse epididymis, a number of cDNAs were identified that represented mitochondrial genes including cytochrome oxidase c subunits I, II, and III, cytochrome b, NADH dehydrogenase subunit 5, a region of the displacement loop, and the 16S rRNA. Northern blot analysis of RNA from intact, castrate, or testosterone-replaced epididymides confirmed that these mitochondrial mRNAs as well as the rRNA were androgen regulated with a 2- to 5-fold reduction in expression observed after 4 weeks castration with partial to full recovery to precastrate levels upon 4 weeks of testosterone replacement. In contrast to the mitochondrial genes, the expression of the RNA component of the mitochondrial RNA-processing endoribonuclease (RNAase MRP), a nuclear factor which is thought to be involved in the regulation of mitochondrial DNA synthesis, increased in the epididymis upon castration and then returned to precastrate levels after testosterone replacement. An examination of other androgen-responsive tissues showed that mitochondrial gene expression was also regulated by androgens in the kidney. The RNAase MRP RNA levels, however, showed an increase after castration only in the reproductive tissues (epididymis, vas deferens, and seminal vesicle) and not in the kidney. No correlative increase in mitochondrial DNA levels was observed for any of the tissues. Finally, an analysis of various mouse tissues as well as the different regions of the epididymis revealed large differences in mitochondrial mRNA levels. While for most tissues the mRNA levels correlated with the mitochondrial DNA content, the levels of the RNAase MRP RNA did not. Taken together, these findings not only show the large variations in mitochondrial gene expression between tissues but also demonstrate that the expression of mitochondrial genes and ultimately mitochondrial function are androgen regulated in the epididymis and kidney.  相似文献   

16.
17.
18.
Stress Protein Inductions After Brain Ischemia   总被引:7,自引:0,他引:7  
  相似文献   

19.
In the present work, we report expression in Escherichia coli, purification, and characterization of recombinant full-length cytochrome b(5) from outer mitochondrial membrane. Optimization of expression conditions for cytochrome b(5) from outer mitochondrial membrane allowed reaching expression level up to 10(4) nmol of the hemeprotein per liter of culture. Recombinant cytochrome b(5) from outer mitochondrial membrane was purified from cell lysate by using metal-affinity chromatography. It has physicochemical, spectral, and immunochemical properties similar to those of cytochrome b(5) from rat liver outer mitochondrial membrane. Immobilized recombinant mitochondrial cytochrome b(5) was used as affinity ligand to study its interaction with electron transfer proteins. By using this approach, it is shown that in interaction of NADPH:cytochrome P450 reductase with both forms of cytochrome b(5) an important role is played by hydrophobic interactions between proteins, although the contribution of these interactions in complex formation with NADPH:cytochrome P450 reductase is different for isoforms of cytochrome b(5).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号