首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The starch granules of hexaploid wheat (Triticum aestivum) contain a group of three proteins known as SGP-1 (starch granule protein-1) proteins, which have apparent molecular masses of 100, 108, and 115 kD. The nature and role of these proteins has not been defined previously. We demonstrate that these polypeptides are starch synthases that are present in both the starch granule and the soluble fraction at the early stages of wheat endosperm development, but that are exclusively granule bound at mid and late endosperm development. A partial cDNA clone encoding a fragment of the 100-kD protein was obtained by screening a wheat endosperm cDNA expression library using monoclonal antibodies. Three classes of cDNA were subsequently isolated from a wheat endosperm cDNA library by nucleic acid hybridization and were shown to encode the 100-, 108-, and 115-kD proteins. The cDNA sequences are highly homologous to class II starch synthases and have the highest homology with the maize SSIIa (starch synthase IIa) gene. mRNA for the SGP-1 proteins was detected in the leaf, pre-anthesis florets, and endosperm of wheat and is highly expressed in the leaf and in the grain during the early to mid stages of development. We discuss the roles of the SGP-1 proteins in starch biosynthesis in wheat.  相似文献   

2.
The effects of waxy mutations on starch-granule-bound starch synthases (EC 2.4.1.18) in the developing endosperm of barley (Hordeum vulgare L.) and maize (Zea mays L.) have been investigated. Three granule-bound starch synthases in barley endosperm were identified by use of antibodies to known starch synthases, by reconstitution and assay of individual proteins from sodium dodecyl sulphate-polyacrylamide gels of granule-bound proteins, and by partial purification of proteins released by enzymic digestion of starch. These are proteins of 60, 77 and 90 kDa. Use of antibodies to known starch synthases and partial purification of proteins released by enzymic digestion of starch indicated that there may be at least four granule-bound starch synthases in maize endosperm: proteins of 59, 74, 77 and 83 kDa. Mutations at the waxy loci of both species affected only the 60- (barley) and 59-(maize) kDa isoforms. No evidence was found that other putative isoforms are altered in abundance or activity by the mutations. The contribution of our results to understanding of the starch synthase activity of intact starch granules and the mechanism of amylose synthesis is discussed.We are very grateful to Dr. Roger Ellis (SCRI, Dundee, Scotland) for the gift of barley seeds, and to Drs Roger Ellis, Alan Schulman and Cathie Martin for helpful advice and comments during the course of this work.  相似文献   

3.
In addition to the exclusively granule-bound starch synthase GBSSI, starch granules also bind significant proportions of other starch biosynthetic enzymes, particularly starch synthases (SS) SSI and SSIIa, and starch branching enzyme (BE) BEIIb. Whether this association is a functional aspect of starch biosynthesis, or results from non-specific entrapment during amylopectin crystallization, is not known. This study utilized genetic, immunological, and proteomic approaches to investigate comprehensively the proteome and phosphoproteome of Zea mays endosperm starch granules. SSIII, BEI, BEIIa, and starch phosphorylase were identified as internal granule-associated proteins in maize endosperm, along with the previously identified proteins GBSS, SSI, SSIIa, and BEIIb. Genetic analyses revealed three instances in which granule association of one protein is affected by the absence of another biosynthetic enzyme. First, eliminating SSIIa caused reduced granule association of SSI and BEIIb, without affecting GBSS abundance. Second, eliminating SSIII caused the appearance of two distinct electrophoretic mobility forms of BEIIb, whereas only a single migration form of BEIIb was observed in wild type or any other mutant granules examined. Third, eliminating BEIIb caused significant increases in the abundance of BEI, BEIIa, SSIII, and starch phosphorylase in the granule, without affecting SSI or SSIIa. Analysis of the granule phosphoproteome with a phosphorylation-specific dye indicated that GBSS, BEIIb, and starch phosphorylase are all phosphorylated as they occur in the granule. These results suggest the possibility that starch metabolic enzymes located in granules are regulated by post-translational modification and/or protein-protein interactions.  相似文献   

4.
We have investigated the nature and locations of isoforms of starch synthase in the developing endosperm of wheat (Triticum aestivum L.). There are three distinct granule-bound isoforms of 60 kDa (the Waxy gene product), 77 kDa and 100–105 kDa. One of these isoforms, the 77-kDa protein, is also present in the soluble fraction of the endosperm but it contributes only a small proportion of the total soluble activity. Most of the soluble activity is contributed by isoforms which are apparently not also granule-bound. The 60-kDa and 77kDa isoforms of wheat are antigenically related to isoforms of very similar size in the developing pea embryo, but the other isoforms in the endosperm appear to have no counterparts in the pea embryo. The significance of these results in terms of the diversity of isoforms of starch synthase and their locations is discussed.Abbreviations DEAE diethylaminoethyl - GBSS granule-bound starch synthase - NT nullisomictetrasomic We are grateful to the late John Hawker (University of Adelaide, Australia) and to John Snape (John Innes Centre, UK) for useful discussions during the course of this work, to John Snape and Catherine Chinoy (John Innes Centre, UK) for the gift of the NT lines and to Richard Batt (University of Adelaide, Australia) for technical assistance.  相似文献   

5.
Mutations affecting specific starch biosynthetic enzymes commonly have pleiotropic effects on other enzymes in the same metabolic pathway. Such genetic evidence indicates functional relationships between components of the starch biosynthetic system, including starch synthases (SSs), starch branching enzymes (BEs), and starch debranching enzymes; however, the molecular explanation for these functional interactions is not known. One possibility is that specific SSs, BEs, and/or starch debranching enzymes associate physically with each other in multisubunit complexes. To test this hypothesis, this study sought to identify stable associations between three separate SS polypeptides (SSI, SSIIa, and SSIII) and three separate BE polypeptides (BEI, BEIIa, and BEIIb) from maize (Zea mays) amyloplasts. Detection methods included in vivo protein-protein interaction tests in yeast (Saccharomyces cerevisiae) nuclei, immunoprecipitation, and affinity purification using recombinant proteins as the solid phase ligand. Eight different instances were detected of specific pairs of proteins associating either directly or indirectly in the same multisubunit complex, and direct, pairwise interactions were indicated by the in vivo test in yeast. In addition, SSIIa, SSIII, BEIIa, and BEIIb all comigrated in gel permeation chromatography in a high molecular mass form of approximately 600 kD, and SSIIa, BEIIa, and BEIIb also migrated in a second high molecular form, lacking SSIII, of approximately 300 kD. Monomer forms of all four proteins were also detected by gel permeation chromatography. The 600- and 300-kD complexes were stable at high salt concentration, suggesting that hydrophobic effects are involved in the association between subunits.  相似文献   

6.
7.
Triticale (x Triticosecale Wittmack) grains synthesize and accumulate starch as their main energy source.Starch accumulation rate and synthesis activities of ADP-glucose pyrophosphorylase, soluble starch synthases, granule-bound starch synthase and starch-branching enzyme showed similar pattern of unimodal curves during endosperm development. There was no significant difference in activity of the starch granule-bound protein isolated from total and separated starch granules at different developmental stages after anthesis in triticale. Evans Blue staining and analysis of DNA fragmentation indicated that cells of triticale endosperm undergo programmed cell death during its development. Dead cells within the endosperm were detected at 6 d post anthesis (DPA), and evidence of DNA fragmentation was first observed at 21 DPA. The period between initial detection of PCD to its rapid increase overlapped with the key stages of rapid starch accumulation during endosperm development. Cell death occurred stochastically throughout the whole endosperm, meanwhile, the activities of starch biosynthetic enzymes and the starch accumulation rate decreased in the late stages of grain filling. These results suggested that the timing and progression of PCD in triticale endosperm may interfere with starch synthesis and accumulation.  相似文献   

8.
9.
Triticale(× Triticosecale Wittmack) grains synthesize and accumulate starch as their main energy source.Starch accumulation rate and synthesis activities of ADP-glucose pyrophosphorylase,soluble starch synthases,granule-bound starch synthase and starch-branching enzyme showed similar pattern of unimodal curves during endosperm development.There was no significant difference in activity of the starch granule-bound protein isolated from total and separated starch granules at different developmental stages after anthesis in triticale.Evans Blue staining and analysis of DNA fragmentation indicated that cells of triticale endosperm undergo programmed cell death during its development.Dead cells within the endosperm were detected at 6 d post anthesis(DPA),and evidence of DNA fragmentation was first observed at 21 DPA.The period between initial detection of PCD to its rapid increase overlapped with the key stages of rapid starch accumulation during endosperm development.Cell death occurred stochastically throughout the whole endosperm,meanwhile,the activities of starch biosynthetic enzymes and the starch accumulation rate decreased in the late stages of grain filling.These results suggested that the timing and progression of PCD in triticale endosperm may interfere with starch synthesis and accumulation.  相似文献   

10.
Three forms of soluble starch synthase were resolved by anion-exchange chromatography of soluble extracts from immature rice (Oryza sativa L.) seeds, and each of these forms was further purified by affinity chromatograph. The 55-, 57-, and 57-kD proteins in the three preparations were identified as candidates for soluble starch synthase by western blot analysis using an antiserum against rice granule-bound starch synthase. It is interesting that the amino-terminal amino acid sequence was identical among the three proteins, except that the 55-kD protein lacked eight amino acids at the amino terminus. Thus, these three proteins are products of the same gene. The cDNA clones coding for this protein have been isolated from an immature rice seed library in lambda gt11 using synthetic oligonucleotides as probes. The deduced amino acid sequence of this protein contains a lysine-X-glycine-glycine consensus sequence for the ADP-glucose-binding site of starch and glycogen synthases. Therefore, we conclude that this protein corresponds to a form of soluble starch synthase in immature rice seeds. The precursor of the enzyme contains 626 amino acids, including a 113-residue transit peptide at the amino terminus. The mature form of soluble starch synthase shares a significant but low sequence identity with rice granule-bound starch synthase and Escherichia coli glycogen synthase. However, several regions, including the substrate-binding site, are highly conserved among these three enzymes. Blot hybridization analysis demonstrates that the gene encoding soluble starch synthase is a single-copy gene in the rice genome and is expressed in both leaves and immature seeds. These results suggest that soluble and granule-bound starch synthases play distinct roles in starch biosynthesis of plant.  相似文献   

11.
Protein-protein interactions among enzymes of amylopectin biosynthesis were investigated in developing wheat (Triticum aestivum) endosperm. Physical interactions between starch branching enzymes (SBEs) and starch synthases (SSs) were identified from endosperm amyloplasts during the active phase of starch deposition in the developing grain using immunoprecipitation and cross-linking strategies. Coimmunoprecipitation experiments using peptide-specific antibodies indicate that at least two distinct complexes exist containing SSI, SSIIa, and either of SBEIIa or SBEIIb. Chemical cross linking was used to identify protein complexes containing SBEs and SSs from amyloplast extracts. Separation of extracts by gel filtration chromatography demonstrated the presence of SBE and SS forms in protein complexes of around 260 kD and that SBEII forms may also exist as homodimers. Analysis of cross-linked 260-kD aggregation products from amyloplast lysates by mass spectrometry confirmed SSI, SSIIa, and SBEII forms as components of one or more protein complexes in amyloplasts. In vitro phosphorylation experiments with gamma-(32)P-ATP indicated that SSII and both forms of SBEII are phosphorylated. Treatment of the partially purified 260-kD SS-SBE complexes with alkaline phosphatase caused dissociation of the assembly into the respective monomeric proteins, indicating that formation of SS-SBE complexes is phosphorylation dependent. The 260-kD SS-SBEII protein complexes are formed around 10 to 15 d after pollination and were shown to be catalytically active with respect to both SS and SBE activities. Prior to this developmental stage, SSI, SSII, and SBEII forms were detectable only in monomeric form. High molecular weight forms of SBEII demonstrated a higher affinity for in vitro glucan substrates than monomers. These results provide direct evidence for the existence of protein complexes involved in amylopectin biosynthesis.  相似文献   

12.
A genomic library of Streptococcus sanguis, strain G9B, was constructed and expressed in Escherichia coli using a lambda gt11 expression vector. The amplified library was probed with polyclonal anti-G9B IgG and 13 antigen-positive clones were isolated. A lysate of one clone, designated PP39, absorbed the adhesion-inhibitory activity of anti-G9B IgG. This clone contained an insert of approximately 2000 bp and expressed unique 200 and 53 kDa proteins that reacted with monospecific anti-adhesin antibody. The 200 kDa protein also reacted with anti-beta-galactosidase IgG, indicating that it is a fusion protein of which 84 kDa represents the streptococcal adhesin. The 84 and 53 kDa proteins are similar in size to the major polypeptides in a streptococcal antigen complex which is associated with the adhesion of G9B to saliva-coated hydroxyapatite. The 53 kDa fragment may result from post-translational cleavage of the recombinant polypeptide.  相似文献   

13.
A starch granule protein, SGP-1, is a starch synthase bound to starch granules in wheat endosperm. A wheat lacking SGP-1 was produced by crossing three variants each deficient in one of three SGP-1 classes, namely SGP-A1, -B1 or -D1. This deficient wheat (SGP–1 null wheat) showed some alterations in endosperm starch, meaning that SGP-1 is involved in starch synthesis. Electrophoretic experiments revealed that the levels of two starch granule proteins, SGP-2 and -3, decreased considerably in the SGP-1 null wheat though that of the waxy protein (granule-bound starch syn- thase I) did not. The A-type starch granules were deformed. Apparent high amylose level (30.8–37.4%) was indicated by colorimetric measurement, amperometric titration, and the concanavalin A method. The altered structure of amylopectin was detected by both high- performance size-exclusion chromatography and high-performance anion exchange chromatography. Levels of amylopectin chains with degrees of polymerization (DP) 6–10 increased, while DP 11–25 chains decreased. A low starch crystallinity was shown by both X-ray diffraction and differential scanning calorimetry (DSC) analyses because major peaks were absent. Abnormal crystallinity was also suggested by the lack of a polarized cross in SGP-1 null starch. The above results suggest that SGP-1 is responsible for amylopectin synthesis. Since the SGP-1 null wheat produced novel starch which has not been described before, it can be used to expand variation in wheat starch. Received: 30 April 1999 / Accepted: 9 November 1999  相似文献   

14.
15.
Reversibly glycosylated polypeptides (RGPs) have been implicated in polysaccharide biosynthesis. In plants, these proteins may function, for example, in cell wall synthesis and/or in synthesis of starch. We have isolated wheat (Triticum aestivum) and rice (Oryza sativa) Rgp cDNA clones to study the function of RGPs. Sequence comparisons showed the existence of two classes of RGP proteins, designated RGP1 and RGP2. Glucosylation activity of RGP1 and RGP2 from wheat and rice was studied. After separate expression of Rgp1 and Rgp2 in Escherichia coli or yeast (Saccharomyces cerevisiae), only RGP1 showed self-glucosylation. In Superose 12 fractions from wheat endosperm extract, a polypeptide with a molecular mass of about 40 kD is glucosylated by UDP-glucose. Transgenic tobacco (Nicotiana tabacum) plants, overexpressing either wheat Rgp1 or Rgp2, were generated. Subsequent glucosylation assays revealed that in RGP1-containing tobacco extracts as well as in RGP2-containing tobacco extracts UDP-glucose is incorporated, indicating that an RGP2-containing complex is active. Gel filtration experiments with wheat endosperm extracts and extracts from transgenic tobacco plants, overexpressing either wheat Rgp1 or Rgp2, showed the presence of RGP1 and RGP2 in high-molecular mass complexes. Yeast two-hybrid studies indicated that RGP1 and RGP2 form homo- and heterodimers. Screening of a cDNA library using the yeast two-hybrid system and purification of the complex by an antibody affinity column did not reveal the presence of other proteins in the RGP complexes. Taken together, these results suggest the presence of active RGP1 and RGP2 homo- and heteromultimers in wheat endosperm.  相似文献   

16.
Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.  相似文献   

17.
Waxy wheat (Triticum aestivum L.) lacks the waxy protein, which is also known as granule-bound starch synthase I (GBSSI). The starch granules of waxy wheat endosperm and pollen do not contain amylose and therefore stain red-brown with iodine. However, we observed that starch from pericarp tissue of waxy wheat stained blue-black and contained amylose. Significantly higher starch synthase activity was detected in pericarp starch granules than in endosperm starch granules. A granule-bound protein that differed from GBSSI in molecular mass and isoelectric point was detected in the pericarp starch granules but not in granules from endosperm. This protein was designated GBSSII. The N-terminal amino acid sequence of GBSSII, although not identical to wheat GBSSI, showed strong homology to waxy proteins or GBSSIs of cereals and potato, and contained the motif KTGGL, which is the putative substrate-binding site of GBSSI of plants and of glycogen synthase of Escherichia coli. GBSSII cross-reacted specifically with antisera raised against potato and maize GBSSI. This study indicates that GBSSI and GBSSII are expressed in a tissue-specific manner in different organs, with GBSSII having an important function in amylose synthesis in the pericarp.  相似文献   

18.
Zhang G  Cheng Z  Zhang X  Guo X  Su N  Jiang L  Mao L  Wan J 《Génome》2011,54(6):448-459
Soluble starch synthases (SSs) are major enzymes involved in starch biosynthesis in developing rice (Oryza sativa L.) endosperm. Despite extensive studies of SSs in various plant species including rice, the functional modes of action among multiple SS genes are still not clear. Here, we generated transgenic RNA interference (RNAi) repressed lines for seven of the eight members of the rice SS gene family and studied their effects on starch synthesis and grain formation. Consistent with their expression domains, RNAi repression of genes that encode isozymes SSI, SSIIa, and SSIIIa had strong effects on grain development, whereas no obvious phenotypic changes were observed in transgenic plants with the other SS genes being RNAi repressed, indicating functional redundancies among the genes. To study the potential functional interactions of SS genes, we generated SSIIa/SSIIIa double repression lines whose kernels displayed a chalky kernel appearance and had increased amylose levels, increased pasting temperatures, and decreased viscosities. The double mutation also reduced short (degree of polymerization (DP) 5-6) and long (DP 12-23) amylopectin chain contents in the grain and increased the medium long types (DP 7-11). The nonadditive nature of the double mutation line suggests that SSIIa and SSIIIa interact with each other during starch synthesis. Such interaction may be physical via starch phophorylase as indicated by our pair-wise yeast two-hybrid assays on major starch synthesis enzymes. Collectively, the data showed that SSIIa and SSIIIa play distinctive, but partially overlapping, roles during rice grain starch synthesis. The possibility of extensive redundancy or complementarity among SS isozymes is discussed.  相似文献   

19.
Cloning and characterization of a gene encoding wheat starch synthase I   总被引:4,自引:0,他引:4  
 A cDNA clone, and a corresponding genomic DNA clone, containing full-length sequences encoding wheat starch synthase I, were isolated from a cDNA library of hexaploid wheat (Triticum aestivum) and a genomic DNA library of Triticum tauschii, respectively. The entire sequence of the starch synthase-I cDNA (wSSI-cDNA) is 2591 bp, and it encodes a polypeptide of 647 amino-acid residues that shows 81% and 61% identity to the amino-acid sequences of SSI-type starch synthases from rice and potato, respectively. In addition, the putative N-terminal amino-acid sequence of the encoded protein is identical to that determined for the N-terminal region of the 75-kDa starch synthase present in the starch granule of hexaploid wheat. Two prominent starch synthase activities were demonstrated to be present in the soluble fraction of wheat endosperm by activity staining of the non-denaturing PAGE gels. The most anodal band (wheat SSI) shows the highest staining intensity and results from the activity of a 75-kDa protein. The wheat SSI mRNA is expressed in the endosperm during the early to mid stages of wheat grain development but was not detected by Northern blotting in other tissues from the wheat plant. The gene encoding the wheat SSI (SsI-D1) consists of 15 exons and 14 introns, similar to the structure of the rice starch synthase-I gene. While the exons of wheat and rice are virtually identical in length, the wheat SsI-D1 gene has longer sequences in introns 1, 2, 4 and 10, and shorter sequences in introns 6, 11 and 14, than the corresponding rice gene. Received: 5 June 1998 / Accepted: 29 September 1998  相似文献   

20.
Peng M  Gao M  Båga M  Hucl P  Chibbar RN 《Plant physiology》2000,124(1):265-272
Two starch granule-bound proteins (SGP), SGP-140 and SGP-145, were preferentially associated with A-type starch granules (>10 microm) in developing and mature wheat (Triticum aestivum) kernels. Immunoblotting and N-terminal sequencing suggested that the two proteins were different variants of SBEIc, a 152-kD isoform of wheat starch-branching enzyme. Both SGP-140 and SGP-145 were localized to the endosperm starch granules but were not found in the endosperm soluble fraction or pericarp starch granules younger than 15 d post anthesis (DPA). Small-size starch granules (<10 microm) initiated before 15 DPA incorporated SGP-140 and SGP-145 throughout endosperm development and grew into full-size A-type starch granules (>10 microm). In contrast, small-size starch granules harvested after 15 DPA contained only low amounts of SGP-140 and SGP-145 and developed mainly into B-type starch granules (<10 microm). Polypeptides of similar mass and immunologically related to SGP-140 and/or SGP-145 were also preferentially incorporated into A-type starch granules of barley (Hordeum vulgare), rye (Secale cereale), and triticale (x Triticosecale Wittmack) endosperm, which like wheat endosperm have a bimodal starch granule size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号