首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Retinoic acid (RA) suppresses alpha 2(I) collagen expression in hepatic stellate cells through the binding of retinoic acid receptor beta (RAR beta) and retinoid X receptor alpha (RXR alpha) to RA response elements (RAREs) in the alpha 2(I) collagen promoter. This study determined the influence of coactivators and corepressors to RAR beta and RXR alpha on the regulation of the alpha 2(I) collagen promoter. The coactivators, steroid receptor coactivator-1 (SRC-1) and growth hormone receptor interacting protein-1 (GRIP-1), enhanced, while the nuclear receptor corepressor (N-CoR) abolished the inhibitory effect of RAR beta and RXR alpha on the promoter activity. In the presence of RA, the coactivators SRC-1 and GRIP-1 formed complexes with RAR beta and RXR alpha which are bound to an oligonucleotide specifying a RARE site in the promoter. In conclusion, this study shows that in the presence of retinoic acid, the coactivators SRC-1 and GRIP-1 augment, while the corepressor N-CoR abolishes, the suppressive effects of RAR beta and RXR alpha on alpha 2(I) collagen promoter activity.  相似文献   

8.
9.
10.
The receptors for retinoic acid (RA) and for 1α,25-dihydroxyvitamin D3 (VD), RAR, RXR, and VDR are ligand-inducible members of the nuclear receptor superfamily. These receptors mediate their regulatory effects by binding as dimeric complexes to response elements located in regulatory regions of hormone target genes. Sequence scanning of the tumor necrosis factor-α type I receptor (TNFαRI) gene identified a 3′ enhancer region composed of two directly repeated hexameric core motifs spaced by 2 nucleotides (DR2). On this novel DR2-type sequence, but not on a DR5-type RA response element, VD was shown to act through its receptor, the vitamin D receptor (VDR), as a repressor of retinoid signalling. The repression appears to be mediated by competitive protein–protein interactions between VDR, RAR, RXR, and possibly their cofactors. This VDR-mediated transrepression of retinoid signaling suggests a novel mechanism for the complex regulatory interaction between retinoids and VD. J. Cell. Biochem. 67:287–296, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Receptor-interacting protein 140 (RIP140) contains multiple receptor interaction domains and interacts with retinoic acid receptors in a ligand-dependent manner. Nine LXXLL receptor-interacting motifs are organized into two clusters within this molecule, each differentially interacting with retinoic acid receptor (RAR) and retinoid X receptor (RXR). RAR interacts with the 5' cluster, whereas RXR interacts with both clusters. Additionally, a third ligand-dependent receptor-interacting domain is assigned to the very C terminus of this molecule, which contains no LXXLL motif. In mammalian cells, receptor heterodimerization is required for efficient interaction of RAR/RXR with RIP140. Furthermore, the heterodimeric, holoreceptors cooperatively interact with RIP140, which requires the activation function 2 domains of both receptors. By using different retinoic acid reporter systems, it is demonstrated that RIP140 strongly suppresses retinoic acid induction of reporter activities, but coactivator SRC-1 enhances it. Furthermore, an intrinsic repressive activity of RIP140 is demonstrated in a GAL4 fusion system. Unlike receptor corepressor, which interacts with antagonist-bound RAR/RXRs, RIP140 does not interact with antagonist-occupied RAR/RXR dimers. These data suggest that RIP140 represents a third coregulator category that is able to suppress the activation of certain agonist-bound hormone receptors.  相似文献   

12.
13.
Retinoic acid (RA), the active derivative of vitamin A, is essential for normal embryonic development of vertebrates because both the lack and excess of RA result in developmental malformations. We previously reported that aryl hydrocarbon receptor (AHR) is also required for vascular and bone formation by regulating cytochrome P450 expression. However, little is known about the roles of retinoic acid receptors (RAR) and retinoid X receptors (RXR) in the embryonic development of blood vessels and molecular cross-talk between RAR/RXR and AHR. We report for the first time that RA and RAR/RXR are required for expression of AHR mRNA and the embryonic development of blood vessel and bone. The embryonic organogenesis of medaka fish was specifically inhibited by an inhibitor of RA synthesis (diethylaminobenzaldehyde), antagonists of RAR (Ro41-5253) and RXR (Ro71-4595), agonist (beta-naphthoflavone) and antagonist (alpha-naphthoflavone) of AHR, and excess RA. These reagents are useful for future studies to elucidate molecular mechanisms for vascular and bone formation in the medaka embryogenesis. Our results also show that medaka embryos may be useful for screening inhibitors of vascular formation for anti-cancer drugs.  相似文献   

14.
15.
We report here that ultraviolet irradiation substantially reduced the mRNA and protein of the two major nuclear retinoid receptors, RAR-gamma and RXR-alpha, in human skin in vivo. Pre-treatment with retinoic acid mitigated this loss of nuclear retinoid receptors. Ultraviolet irradiation caused a near-total loss of retinoic acid induction of two RAR/RXR target genes, cellular retinoic acid binding protein-II and RA 4-hydroxylase, but did not affect 1,25-dihydroxyvitamin D3 induction of the vitamin D receptor/RXR-regulated gene vitamin D 24-hydroxylase. In effect, ultraviolet irradiation causes a functional vitamin A deficiency that may have deleterious effects on skin function, contributing to skin photo-aging and carcinogenesis.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号