首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccharomyces cerevisiae strains with a disrupted RAS1 gene and with an intact RAS2 gene (ras1- RAS2 strains) grew well on both fermentable and nonfermentable carbon sources. By constructing isogenic mutants having a disrupted RAS1 locus and a randomly mutagenized chromosomal RAS2 gene, we obtained yeast strains with specific growth defects. The strain TS1 was unable to grow on nonfermentable carbon sources and galactose at 37 degrees C, while it could grow on glucose at the same temperature. The mutated RAS2 gene in TS1 cells encoded a protein with the glycines at positions 82 and 84 replaced by serine and arginine respectively. Both mutations were necessary for temperature sensitivity. We also isolated a mutant yeast that was unable to grow on nonfermentable carbon sources both at 30 and 37 degrees C, while growing on glucose at both temperatures. This phenotype was caused by a single chromosomal mutation, leading to the replacement of aspartic acid 40 of the RAS2 protein by asparagine. A ras1- yeast strain with a chromosomal RAS2 gene harbouring the three mutations together did not grow at any temperature using non-fermentable carbon sources, but it was able to grow on glucose at 30 degrees C, and not at 37 degrees C. The mutated proteins were much less effective than the wild-type RAS2 protein in the stimulation of adenylate cyclase, but were efficiently expressed in vivo. The possible roles of residues 40, 82 and 84 of the RAS2 protein in the regulation of adenylate cyclase are discussed.  相似文献   

2.
The phenotype of an organism is the manifestation of its expressed genome. The gcr1 mutant of yeast grows at near wild-type rates on nonfermentable carbon sources but exhibits a severe growth defect when grown in the presence of glucose, even when nonfermentable carbon sources are available. Using DNA microarrays, the genomic expression patterns of wild-type and gcr1 mutant yeast growing on various media, with and without glucose, were compared. A total of 53 open reading frames (ORFs) were identified as GCR1 dependent based on the criterion that their expression was reduced twofold or greater in mutant versus wild-type cultures grown in permissive medium consisting of YP supplemented with glycerol and lactate. The GCR1-dependent genes, so defined, fell into three classes: (i) glycolytic enzyme genes, (ii) ORFs carried by Ty elements, and (iii) genes not previously known to be GCR1 dependent. In wild-type cultures, GCR1-dependent genes accounted for 27% of the total hybridization signal, whereas in mutant cultures, they accounted for 6% of the total. Glucose addition to the growth medium resulted in a reprogramming of gene expression in both wild-type and mutant yeasts. In both strains, glycolytic enzyme gene expression was induced by the addition of glucose, although the expression of these genes was still impaired in the mutant compared to the wild type. By contrast, glucose resulted in a strong induction of Ty-borne genes in the mutant background but did not greatly affect their already high expression in the wild-type background. Both strains responded to glucose by repressing the expression of genes involved in respiration and the metabolism of alternative carbon sources. Thus, the severe growth inhibition observed in gcr1 mutants in the presence of glucose is the result of normal signal transduction pathways and glucose repression mechanisms operating without sufficient glycolytic enzyme gene expression to support growth via glycolysis alone.  相似文献   

3.
Summary Mutants of Saccharomyces cerevisiae without detectable phosphofructokinase activity were isolated. They were partly recessive and belonged to two genes called PFK1 and PFK2. Mutants with a defect in only one of the two genes could not grow when they were transferred from a medium with a nonfermentable carbon source to a medium with glucose and antimycin A, an inhibitor of respiration. However, the same mutants could grow when antimycin A was added to such mutants after they had been adapted to the utilization of glucose. Double mutants with defects in both genes could not grow at all on glucose as the sole carbon source. Mutants with a single defect in gene PFK1 or PFK2 could form ethanol on a glucose medium. However, in contrast to wild-type cells, there was a lag period of about 2 h before ethanol could be formed after transfer from a medium with only nonfermentable carbon sources to a glucose medium. Wild-type cells under the same conditions started to produce ethanol immediately. Mutants with defects in both PFK genes could not form ethanol at all. Mutants without phosphoglucose isomerase or triosephosphate isomerase did not form ethanol either. Double mutants without phosphofructokinase and phosphoglucose isomerase accumulated large amounts of glucose-6-phosphate on a glucose medium. This suggested that the direct oxidation of glucose-6-phosphate could not provide a bypass around the phosphofructokinase reaction. On the other hand, the triosephosphate isomerase reaction was required for ethanol production. Experiments with uniformly labeled glucose and glucose labeled in positions 3 and 4 were used to determine the contribution of the different carbon atoms of glucose to the fermentative production of CO2. With only fermentation operating, only carbon atoms 3 and 4 should contribute to CO2 production. However, wild-type cells produced significant amounts of radioactivity from other carbon atoms and pfk mutants generated CO2 almost equally well from all six carbon atoms of glucose. This suggested that phosphofructokinase is a dispensable enzyme in yeast glycolysis catalyzing only part of the glycolytic flux.  相似文献   

4.
Cardiolipin (CL) is a unique phospholipid which is present throughout the eukaryotic kingdom and is localized in mitochondrial membranes. Saccharomyces cerevisiae cells containing a disruption of CRD1, the structural gene encoding CL synthase, have no CL in mitochondrial membranes. To elucidate the physiological role of CL, we compared mitochondrial functions in the crd1Delta mutant and isogenic wild type. The crd1Delta mutant loses viability at elevated temperature, and prolonged culture at 37 degrees C leads to loss of the mitochondrial genome. Mutant membranes have increased phosphatidylglycerol (PG) when grown in a nonfermentable carbon source but have almost no detectable PG in medium containing glucose. In glucose-grown cells, maximum respiratory rate, ATPase and cytochrome oxidase activities, and protein import are deficient in the mutant. The ADP/ATP carrier is defective even during growth in a nonfermentable carbon source. The mitochondrial membrane potential is decreased in mutant cells. The decrease is more pronounced in glucose-grown cells, which lack PG, but is also apparent in membranes containing PG (i.e. in nonfermentable carbon sources). We propose that CL is required for maintaining the mitochondrial membrane potential and that reduced membrane potential in the absence of CL leads to defects in protein import and other mitochondrial functions.  相似文献   

5.
6.
Exponentially growing cells of Zymomonas mobilis normally exhibit a lag period of up to 3 h when transferred from 0.11 M (2%) to 0.55 M (10%) glucose liquid medium. A mutant of Z. mobilis (CU1Rif2), fortuitously isolated, showed more than a 20-h lag period when grown under the same conditions, whereas on 0.55 M glucose solid medium, it failed to grow. The growth of CU1Rif2 on elevated concentrations of other fermentable (0.55 M sucrose or fructose) or nonfermentable (0.11 M glucose plus 0.44 M maltose or xylose) sugars appeared to be normal. Surprisingly, CU1Rif2 cells grew without any delay on 0.55 M glucose on which wild-type cells had been incubated for 3 h and removed at the beginning of their exponential phase. This apparent preconditioning was not observed with medium obtained from wild-type cells grown on 0.11 M glucose and supplemented to 0.55 M after removal of the wild-type cells. Undelayed growth of CU1Rif2 on 0.55 M glucose previously conditioned by the wild type was impaired by heating or protease treatment. It is suggested that in Z. mobilis, a diffusible proteinaceous heat-labile factor, transitionally not present in 0.55 M glucose CU1Rif2 cultures, triggers growth on 0.55 M glucose. Biochemical analysis of glucose uptake and glycolytic enzymes implied that glucose assimilation was not directly involved in the phenomenon. By use of a wild-type Z. mobilis genomic library, a 4.5-kb DNA fragment which complemented in low copy number the glucose-defective phenotype as well as glucokinase and glucose uptake of CU1Rif2 was isolated. This fragment carries a gene cluster consisting of four putative coding regions, encoding 167, 167, 145, and 220 amino acids with typical Z. mobilis codon usage, -35 and -10 promoter elements, and individual Shine-Dalgarno consensus sites. However, strong homologies were not detected in a BLAST2 (EMBL-Heidelberg) computer search with known protein sequences.  相似文献   

7.
8.
9.
The gene functions of MIG1 and MIG2 are well known for their role in glucose control in Saccharomyces cerevisiae. A prototrophic mig1 disruptant (T468) and mig1mig2 double disruptant (T475) as well as their congenic wild-type strain (CEN.PK 113-7D) were analysed for changes in their peripheral metabolism (batch cultivations on sugar mixtures) and central metabolism (batch and continuous cultivations as well as acceleratostats). Sucrose metabolism was alleviated of glucose control in the mig1 disruptant, and even more so in the mig1mig2 disruptant compared with their wild-type strain. The lag phase in a batch cultivation grown on a glucose-galactose mixture was reduced by 50% in either disruptant, i.e. additional disruption of MIG2 in a mig1 background did not further alleviate galactose metabolism from glucose control. In contrast, both disruptants exhibited a more stringent glucose control of maltose metabolism compared with the wild-type strain. Growing on glucose, the mig1mig2 double disruptant exhibited a 12% higher specific growth rate than the wild-type strain, as well as a significantly higher respiratory capacity.  相似文献   

10.
Summary Yeast mutants lacking phosphofructokinase activity because of a defect in one of the two genes PFK1 and PFK2 can still perform glycolysis and produce ethanol. However, they differ from normal wild-type yeast in several ways. After a transfer from a sugar-free to a glucose medium, wild-type cells start to produce ethanol right away, mutants only after a lag period of about 90 min. About two-thirds of the carbon atoms released as CO2 from wild-type cells derive from glucose carbon atoms 3 and 4. Mutants with a single defect in one of the two phosphofructokinase genes PFK1 and PFK2 show no such a preferential contribution of these two C-atoms of glucose. All six C-atoms contribute almost equally to CO2 production. We have isolated mutants that block glycolysis in single pfk1 and pfk2 mutants. They could be located in three different genes called BYP1, BYP2 and BYP3 (BYP for bypass). In a byp1 mutant, CO2 derived almost exclusively from C-atoms 3 and 4 of glucose. This is what the classical concept of yeast glycolysis predicts. During a search for metabolites accumulating in pfk and byp mutants, we found sedoheptulose-7-phosphate, a pentosephosphate cycle intermediate not detectable in wild-type cells. An analysis of enzymes acting in the direct oxidation of glucose-6-phosphate and in the pentosephosphate cycle did not show any defects in those activities. It is hypothesized that the pentosephosphate cycle not only functions, in providing phosphorylated derivatives of tetroses and pentoses for biosynthetic needs, but also plays an important role in sugar catabolism and fermentation. This hypothesis also implies that the reaction sequency catalyzed by phosphofructokinase and aldolase covers only part of the total catabolic flux.  相似文献   

11.
12.
The lack of mitochondrial porin is not lethal in Saccharomyces cerevisiae, but it impairs some respiratory functions and, therefore, growth on nonfermentable carbon sources such as glycerol. However, after a lag phase porinless mutant cells adapt to growth on glycerol, accumulating large amounts of an 86-kilodalton (kDa) protein (M. Dihanich, K. Suda, and G. Schatz, EMBO J. 6:723-728, 1987) and of a 5-kilobase RNA. Immunogold labeling localized the 86 kDa-protein exclusively to the cytosol fraction, although most of it cosedimented with the microsome fraction in earlier cell fractionations. This discrepancy was resolved when the 86-kDa protein was identified as the major coat protein in viruslike particles (VLPs) which is encoded by a double-stranded RNA (L-A RNA). Elimination of VLPs in the original porinless strain by introduction of the mak10 or the mak3 mutation increased the respiratory defect and prolonged its lag phase on nonfermentable carbon sources. The fact that the simultaneous loss of VLPs and respiratory functions are the introduction of mak10 or mak3 occurred even in some porin-containing wild-type strains suggests that there is a link between VLP and mitochondrial functions.  相似文献   

13.
The chromatin structure of TDH3, one of three genes encoding glyceraldehyde phosphate dehydrogenases in Saccharomyces cerevisiae, was analyzed by nuclease digestion. A large hypersensitive region was found at the TDH3 promoter extending from the RNA initiation site at position -40 to position -560. This hypersensitive domain is nucleosome free and includes all putative cis-acting regulatory DNA elements. It is equally present in cells grown on fermentable as well as nonfermentable carbon sources. In a mutant which lacks the trans-activating protein GCR1 and which as a consequence expresses TDH3 at less than 5% of the wild-type level, the chromatin structure is different. Hypersensitivity between -40 and -370 is lost, due to the deposition of nucleosomes on a stretch that is nucleosome free in wild-type cells. Hypersensitivity is retained, however, further upstream (from -370 to -560). A similarly altered chromatin structure, as in a ger1 mutant, is found in wild-type cells when they approach stationary phase. This is the first evidence for a growth-dependent regulation of the TDH3 promoter.  相似文献   

14.
The Saccharomyces cerevisiae gene SCO1 has been shown to play an essential role in copper delivery to cytochrome c oxidase. Biochemical studies demonstrated specific transfer of copper from Cox17p to Sco1p, and physical interactions between the Sco1p and Cox2p. Deletion of SCO1 yeast gene results in a respiratory deficient phenotype. This study aims to gain a more detailed insight on the effects of SCO1 deletion on S. cerevisiae metabolism. We compared, using a proteomic approach, the protein pattern of SCO1 null mutant strain and wild-type BY4741 strain grown on fermentable and on nonfermentable carbon sources. The analysis showed that on nonfermentable medium, the SCO1 mutant displayed a protein profile similar to that of actively fermenting yeast cells. Indeed, on 3% glycerol, this mutant displayed an increase of some glycolytic and fermentative enzymes such as glyceraldehyde-3-phosphate dehydrogenase 1, enolase 2, pyruvate decarboxylase 1, and alcohol dehydrogenase 1. These data were supported by immunoblotting and enzyme activity assay. Moreover, the ethanol assay and the oxygen consumption measurement demonstrated a fermentative activity in SCO1 mutant on respiratory medium. Our results suggest that on nonfermentable carbon source, the lack of Sco1p causes a metabolic shift from respiration to fermentation.  相似文献   

15.
16.
In the yeast Saccharomyces cerevisíae, trehalose-6-phosphate (tre-6-P) synthase encoded by GGS1/TPS1, is not only involved in the production of trehalose but also in restriction of sugar influx into glycolysis in an unknown fashion; it is therefore essential for growth on glucose or fructose. In this work, we have deleted the TPS2 gene encoding tre-6-P phosphatase in a strain which displays very low levels of Ggs1/Tps1, as a result of the presence of the byp1-3 allele of GGS1/TPS1. The byp1-3 tps2Δ double mutant showed elevated tre-6-P levels along with improved growth and ethanol production, although the estimated concentrations of glycolytic metabolites indicated excessive sugar influx. In the wild-type strain, the addition of glucose caused a rapid transient increase of tre-6-P. In tps2Δ mutant cells, which showed a high tre-6-P level before glucose addition, sugar influx into glycolysis appeared to be diminished. Furthermore, we have confirmed that tre-6-P inhibits the hexokinases in vitro. These data are consistent with restriction of sugar influx into glycolysis through inhibition of the hexokinases by tre-6-P during the switch to fermentative metabolism. During logarithmic growth on glucose the tre-6-P level in wild-type cells was lower than that of the byp1-3 tps2Δ. mutant. However, the latter strain arrested growth and ethanol production on glucose after about four generations. Hence, other mechanisms, which also depend on Ggs1/Tps1, appear to control sugar influx during growth on glucose. In addition, we provide evidence that the requirement for Ggs1/Tps1 for sporulation may be unrelated to its involvement in trehalose metabolism or in the system controlling glycolysis.  相似文献   

17.
18.
We have cloned and sequenced the Lactobacillus casei hprK gene encoding the bifunctional enzyme HPr kinase/P-Ser-HPr phosphatase (HprK/P). Purified recombinant L. casei HprK/P catalyzes the ATP-dependent phosphorylation of HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system at the regulatory Ser-46 as well as the dephosphorylation of seryl-phosphorylated HPr (P-Ser-HPr). The two opposing activities of HprK/P were regulated by fructose-1,6-bisphosphate, which stimulated HPr phosphorylation, and by inorganic phosphate, which stimulated the P-Ser-HPr phosphatase activity. A mutant producing truncated HprK/P was found to be devoid of both HPr kinase and P-Ser-HPr phosphatase activities. When hprK was inactivated, carbon catabolite repression of N-acetylglucosaminidase disappeared, and the lag phase observed during diauxic growth of the wild-type strain on media containing glucose plus either lactose or maltose was strongly diminished. In addition, inducer exclusion exerted by the presence of glucose on maltose transport in the wild-type strain was abolished in the hprK mutant. However, inducer expulsion of methyl beta-D-thiogalactoside triggered by rapidly metabolizable carbon sources was still operative in ptsH mutants altered at Ser-46 of HPr and the hprK mutant, suggesting that, in contrast to the model proposed for inducer expulsion in gram-positive bacteria, P-Ser-HPr might not be involved in this regulatory process.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号