首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Synchronously dividing cultures of the unicellular green alga Scenedesmus obtusiusculus were cultivated for 24 or 70 h in medium high (1000 μM) or low (60 μM) in phosphorus. Aliquots of AlCl3 (0, 37, 74, 111, 148, 185, or 222 μmol) were added daily to 1 l cell suspension at the end of the cell division phase. Algae were also grown in media with different pH, adjusted with HCl, in the absence of AlCl3.
Effects of Al on cell metabolism vary with the intracellular Al concentration and with the concentration of Al available per cell. When the concentration of phosphorus is low, internal concentrations of Al are high and the chlorophyll content and the net dry matter production per cell increase, whereas the photosynthesis and the cell division are increased. Presence of Al in a low P medium decreases the pH of the medium down to 4.5. There are only small effects of Al in the presence of P, due to precipitation of most of the Al with P in the medium.
Despite the Al-induced decrease of the pH of the culture medium, effects caused by Al cannot be explained as a pH effect. Instead, the Al effect may, at least to some extent, be related to a decrease in availability of P in the metabolism, due to formation of aluminium phosphate inside the cell.  相似文献   

3.
Five-week-old seedlings of Norway spruce, Picea abies (L.) Karst., metabolized 1,2-/3H/-gibberellin A1 into a single major compound chromatographically similar to gibberellin A8. The conversion rate exceeded 10% within the 24-h incubation period.  相似文献   

4.
Tritium labelled gibberellin A20 ([3H]-GA20) applied to etiolated shoots and germinating seeds of dwarf pea (Pisum sativum L. cv. Meteor) was converted to gibberellin A29. Identifications were made by GLRC and GC-MS.  相似文献   

5.
Abstract— β-Bungarotoxin, a presynaptic neurotoxin isolated from the venom of Bungarus multicinctus , has been shown to initially cause an increase in the frequency of miniature endplate potentials and subsequently block neuromuscular transmission by inhibiting nerve impulse induced release of acetylcholine. In rat brain synaptosomes it causes a Ca2+-dependent release of acetylcholine together, with a strong inhibition of the high affinity choline uptake system. In this report we demonstrate that β-bungarotoxin acts as a phospholipase A2 (phosphatide 2-acyl hydrolase, EC 3.1.1.4), liberating fatty acids from synaptic membrane phospholipids. It also exhibits a striking similarity in a number of neurochemical properties with that of a purified phospholipase A2 from Naja naja siamensis. In addition, both agents produce a marked depolarization of synaptosomal preparations as measured by a fluorescent dye. We propose that disruption of the membrane phospholipids by phospholipase activity can lead to depolarization of the synaptosomal preparation which promotes both transmitter release and inhibition of the energy-dependent high affinity choline uptake system. With this decreased supply of choline, the acetylcholine content of the cell would be gradually depleted leading to a decrease in transmission.  相似文献   

6.
Hokkanen & Pimentel (1984) proposed a novel approach for the selection of biocontrol agents. They advocated the selection of agents from a relative of the weed plant rather than from the target weed species itself. The new relationship that such agents would have with the weed would be characterised by a relative lack of homeostasis compared with the old herbivore-plant associations traditionally used in weed biocontrol, and would consequently be more effective. There are few examples to support these contentions because of the traditional use of old herbivore-plant associations in weed biocontrol. In the present study, herbivore-plant associations in agricultural situations, which are analogous to agent-weed associations, are examined to assess the potential of new associations for weed biocontrol. The herbivores on 14 introduced crop plants which have salient similarities to the major weeds in the south-western Cape were surveyed: (a) 68% of the 188 insect and mite herbivores are indigenous species in new associations with these host plants, and (b) of the five most damaging pests on each of 13 of the crop plants, 53% are in new associations with the plants. Of the 40 most important agricultural pests in South Africa, 58% are in new associations, confirming these results. About 50% of the insect and mite herbivores in new associations with their host plants are oligophagous, indicating that new associations are not necessarily characterised by polyphagy and hence unsafe for use in weed biocontrol. We conclude that new associations between herbivore species and host plants have strong potential in weed biocontrol because (a) their frequency in agriculture indicates that they can easily be established in weed biocontrol situations, (b) they are as damaging as old associations and (c) they are not necessarily unsafe as regards host specificity. We therefore advocate the use of both the classical approach and that of Hokkanen & Pimentel (1984). Our support for Hokkanen & Pimentel (1984) is, however, based on evidence and rationale clearly different to theirs, and we provide novel guidelines, which can be routinely and practically applied in the selection of agents for weed biocontrol.  相似文献   

7.
Gibberellin (GA) is believed to be involved in thermoperiodic stem elongation. With this in mind, we studied the correlation between gibberellin A1 (GA1) levels and stem elongation affected by alternating day (DT) and night temperature (NT) in 5 genotypes of Pisum sativum differing in their degree of dwarfism. The endogenous GA content in the tissue of two of the genotypes was determined by combined gas chromatography and mass spectrometry. The wild genotype developed 40 to 50% shorter stems and internodes under a low DT and high NT combination (negative difference [DIF] between DT and NT, DT/NT 15.5/21.5 or 14/24°C) than under the opposite regime of high DT and low NT (positive DIF, DT/NT 22.5/16.5 or 24/14°C). The GA biosynthetic mutants ls and le, and the auxin and brassinosteroid mutant lkb responded in a similar way, but not as strongly as the wild type. The stem length of the GA-insensitive slender mutant (la crys) was reduced by only 8% under negative compared to positive DIF. In the wild type endogenous GA levels decreased by 60% from positive to negative DIF in the upper part of the stem. Further, there was a corresponding decrease in the levels of precursors to GA1, i.e. GA53, GA44, GA19 and GA20, while 2β-hydroxylated GA20 and GA1, GA29 and GA8, respectively, were unaffected by DIF. A similar increase in the ratios of GA29 to GA20 and GA8 to GA1 from positive to negative DIF was seen in the stem tissue of the le mutant as in the wild type. The temperature regimes affected the levels of GA1 and its precursors in combined leaf and petiole samples and in the shoot tip in a similar manner as in the stem tissue. However, the different temperature regimes did not affect the ratio of GA8/GA1 in the shoot tip. The results indicate that altered stem elongation of the pea plants in response to diurnal temperature alternations may be mediated by changes in endogenous levels of GA1. The GA1 levels may be controlled by an effect of DIF on both biosynthetic and inactivation steps.  相似文献   

8.
9.
Abstract Prevotella ruminicola B14 is a strictly anaerobic, Gram-negative, polysaccharide-degrading rumen bacterium. Xylanase activity in this strain was found to be inducible, the specific activity of cells grown on xylan being increased at least 20-fold by comparison with cells grown on glucose. Ten bacteriophage clones expressing xylanase activity were isolated from a A EMBL3 genomic DNA library of P. ruminicola B14. These clones were shown to represent four distinct chromosomal regions, based on restriction enzyme analysis and DNA hybridisation. Three groups of clones encoded activity against oat spelt xylan but not carboxymethylcellulose (CMC). In one of these groups, represented by clone 5, activities against pNP-arabinofuranoside and pNP-xyloside were found to be encoded separately from endoxylanase activity. The fourth region encoded activity against CM cellulose and lichenan, in addition to xylan, and contains an endoglucanase/xylanase gene isolated previously.  相似文献   

10.
Trinexapacethyl (TriEt), an acylcyclohexanedionetype inhibitor of gibberellin (GA) biosynthesis, was applied to 3-year-old Eucalyptus globules saplings by localised injection near the base of each stem. The objective was to alter cambial region GA levels and to study the effects on secondary xylem fibre development. Seven weeks later wood samples, with bark and cambial region intact, were removed 10 and 30 cm above the point of injection. Fusiform cambial cell dimensions were compared with those of fibre-tracheids in the most recently formed 100 um of secondary xylem. Increasing TriEt applications from 5 to 5 000 mg active ingredient significantly reduced average fibre length, and to a lesser extent average fusiform cambial cell length. Also reduced was the number of cells in the cambial zone and the number of differentiating fibres with primary walls. However, no trends were evident for changes in fibre diameter, the proportion of vessel elements or the ratio of cambial ray cells to fusiform cambial cells. Two gibberellins (GA1 and GA20), indole-3-acetic acid (IAA) and abscisic acid (ABA) were quantified in cambial region tissues by gas chromatographymass spectrometry using stable isotope labelled internal standards. Increasing TriEt application reduced both GA1 and GA20 levels. Effects on IAA and ABA were not significant, although their levels tended to be lower at the highest TriEt application rate. The elongation of secondary xylem fibres was positively correlated with higher levels of endogenous GA1 (rs= 0.74, P < 0.01) and GA20 (rs= 0.72, P < 0.01). These results support a causal role for GA1 in cambial cell division. They are also consistent with the hypothesis that the elongation of differentiating secondary xylem fibres in woody an–giosperms is dependent on GA1 levels in the cambial region.  相似文献   

11.
The influence of photoperiod on the metabolism of GA20 in Salix pentandra was studied by feeding [3H]-GA20 to seedlings which had been grown previously under long day (LD) or short day (SD) conditions. After 48 h in LD or SD, metabolites were separated on sequential, silica gel partition columns and reversed-phase C18 HPLC. The principal metabolite co-chromatographed with [3H]-GA1 and this conversion was confirmed by feeding [2H]-GA20, which was converted to [2H]-GA1 as identified by gas chromatography-selected ion monitoring. Chromatographic evidence also indicated the minor conversion of [3H]-GA20 to [3H]-GA8 (via [3H]-GA1) and trace conversion to [3H]-GA29 (GAs A1.8,20.29 are native in Salix). Ethyl acetate-insoluble [3H] metabolites were formed and could be cleaved by cellulase to release putative [3H]-GA20 and [3H]-GA1 suggesting the conversion to glucosyl conjugates of these GAs. Metabolism of [3H]-GA20 was slightly more rapid in plants previously grown under LD than SD, an effect which reflected the generally increased shoot growth under LD. However, altering the photoperiod after [3H]-GA20 addition had only a slight effect on the metabolism of [3H]-GA20 in Salix seedlings. This indicates that the conversion of GA20 to GA1 is not a controlling step in the photoperiodic regulation of growth cessation in Salix.  相似文献   

12.
Cessation of shoot elongation in seedlings of Salix pentandra L. is induced by short photoperiod. Gibbereliin A9 (GA9) applied either to the apical bud or injected into a mature leaf, induced shoot elongation under a short photoperiod of 12 h, and GA9 could completely substitute for a transfer to a long photoperiod. When [3H]GA9 or [2H2]GA9 was injected into a leaf, no [3H]GA9 was detected in the elongating apex and only traces of [3H]GA9 were found in the shoot above the treated leaf. By the use of gas chromatography-mass spectrometry (GC-MS), [2H2]GA20 was identified as the main metabolite of [2H2]GA9 in both the shoot and the treated leaf. In addition, [2H2]GA1 and [2H2]GA29 were also identified as metabolites of [2H2]GA9. These results are consistent with the hypothesis that exogenous GA, promotes shoot elongation in Salix through its metabolism to GA20 and GA,.  相似文献   

13.
Abstract: The β4 and β10 thymosins are G-actin binding proteins that exhibit complex patterns of expression during rat cerebellar development. Their expression in vivo is initially high in immature granule cells and diminishes as they migrate and differentiate, ceasing altogether by postnatal day 21. Thymosin β4 is present in a subset of glia throughout postnatal development, and its synthesis is also induced in maturing Bergmann glia. In contrast, thymosin β10 is only present at very low levels in a very small subpopulation of glia in the adult cerebellum. To study the factors differentially regulating expression of the β-thymosins, we characterized their patterns of expression in primary cultures of rat cerebellum. Both β-thymosins were initially expressed in granule cells, although expression, especially of thymosin β4, was truncated compared with the in vivo time course. As in vivo, thymosin β4 was synthesized at much higher levels in astrocytes and microglia in cultures from postnatal cerebellum than was thymosin β10. Unlike in vivo, the latter was expressed in glia cultured from fetal cerebellum. The similarities between the in vivo and in vitro expression of the β-thymosins show that modulation of tissue culture conditions could be used to identify factors regulating β-thymosin expression in vivo. The differences would identify regulatory mechanisms that are not evident from the in vivo studies alone.  相似文献   

14.
Both A1 and A2a Purine Receptors Regulate Striatal Acetylcholine Release   总被引:2,自引:2,他引:0  
The receptors responsible for the adenosine-mediated control of acetylcholine release from immunoaffinity-purified rat striatal cholinergic nerve terminals have been characterized. The relative affinities of three analogues for the inhibitory receptor were (R)-phenylisopropyladenosine greater than cyclohexyladenosine greater than N-ethylcarboxamidoadenosine (NECA), with binding being dependent of the presence of Mg2+ and inhibited by 5'-guanylylimidodiphosphate [Gpp(NH)p] and adenosine receptor antagonists. Adenosine A1 receptor agonists inhibited forskolin-stimulated cholinergic adenylate cyclase activity, with an IC50 of 0.5 nM for (R)-phenylisopropyladenosine and 500 nM for (S)-phenylisopropyladenosine. A1 agonists inhibited acetylcholine release at concentrations approximately 10% of those required to inhibit the cholinergic adenylate cyclase. High concentrations (1 microM) of adenosine A1 agonists were less effective in inhibiting both adenylate cyclase and acetylcholine release, due to the presence of a lower affinity stimulatory A2 receptor. Blockade of the A1 receptor with 8-cyclopentyl-1,3-dipropylxanthine revealed a half-maximal stimulation by NECA of the adenylate cyclase at 10 nM, and of acetylcholine release at approximately 100 nM. NECA-stimulated adenylate cyclase activity copurified with choline acetyltransferase in the preparation of the cholinergic nerve terminals, suggesting that the striatal A2 receptor is localized to cholinergic neurones. The possible role of feedback inhibitory and stimulatory receptors on cholinergic nerve terminals is discussed.  相似文献   

15.
Abstract: Studies of cell injury and death in Alzheimer's disease have suggested a prominent role for β-amyloid peptide (β-AP), a 40–43-amino-acid peptide derived from a larger membrane glycoprotein, β-amyloid precursor protein (β-APP). Previous experiments have demonstrated that β-AP induces cytotoxicity in a neuronal hybrid cell line (MES 23.5) in vitro. Here, we demonstrate that β-APP mRNA content is increased 3.5-fold in 24 h after treatment with β-AP1–40. Accompanying β-AP1–40-induced cell injury, levels of cell-associated β-APP and a C-terminal intermediate fragment are increased up to 15-fold, and levels of secreted forms of β-APP and 12- and 4-kDa fragments are also increased. Application of β-APP antisense oligodeoxynucleotide reduces both cytotoxicity and β-APP expression. 6-Hydroxydopamine application or glucose deprivation causes extensive cell damage, but they do not increase β-APP expression. These results suggest a selective positive feedback mechanism whereby β-AP may induce cytotoxicity and increase levels of potentially neurotrophic as well as amyloidogenic fragments of β-APP with the net consequence of further neuronal damage.  相似文献   

16.
Abstract: Tolerance to and withdrawal from pentobarbital were induced in rats by continuous intracerebroventricular infusion via subcutaneously implanted osmotic minipumps. In situ hybridization of GABAA receptor α1- and β3-subunit mRNA was conducted using synthetic 3'- end 35S-dATP-labeled oligodeoxynucleotide probes. Results were quantified by film densitometry. In animals that were tolerant to pentobarbital, levels of α1-subunit mRNA were decreased in hippocampus, superior colliculus, and inferior colliculus, but levels of β3-subunit mRNA were not affected. Dramatically increased levels of GABAA receptor subunit mRNA were observed in animals 24 h after withdrawal from chronic pentobarbital treatment. These increases occurred in cerebral cortex and cerebellum for the α1 subunit and in cerebral cortex only for the β3-subunit. These data provide further support to the structural and pharmacological GABAA receptor heterogeneity in discrete brain areas. The observed changes of subunit expression may underlie, at least in part, the receptor up- and down-regulation observed in receptor ligand binding studies.  相似文献   

17.
The beta 1- and beta 2-adrenoceptor populations in rat cortex were individually quantified by labelling all of the receptors with [3H]dihydroalprenolol and displacing with isoprenaline (200 microM) or CGP 20712A (1-(2-[(3-carbamoyl-4-hydroxy)phenoxy]ethylamino)-3-[4-(1-methyl-4- trifluoromethyl-2-imidazolyl)phenoxy]-2-propanol methanesulphonate; 100 nM) to define total beta-adrenoceptors and beta 1-adrenoceptors, respectively. Binding parameters for beta 2-adrenoceptors were calculated by the difference. Oral administration of the monoamine reuptake inhibitors sibutramine HCl (3 mg/kg), amitriptyline (10 mg/kg), desipramine (10 mg/kg), or zimeldine (10 mg/kg) for 10 days decreased the total number of beta-adrenoceptors present in rat cortex. This effect was entirely due to a reduction in the number of beta 1-adrenoceptors. Similarly, 10 days of treatment with the monoamine oxidase inhibitor tranylcypromine (10 mg/kg p.o.) or five electroconvulsive shocks (ECSs; 200 V, 2 s) spread over this period also down-regulated beta-adrenoceptors by reducing the content of the beta 1-subtype. By contrast, treatment with clenbuterol (5 mg/kg p.o.) for 10 days reduced the number of cortical beta-adrenoceptors by an effect on the beta 2-adrenoceptor population. The effects of short-term treatment with these drugs were also investigated, and, using the doses shown above, the results of 3 days of administration or a single ECS were determined. Sibutramine HCl and desipramine were alone in producing a reduction in number of beta-adrenoceptors after 3 days. Once again, this was exclusively due to a loss of beta 1-adrenoceptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
It has been shown previously that gibberellins (GAs) mediate the phytochrome (Phy) control of cowpea ( Vigna sinensis L.) epicotyl elongation induced by end-of-day (EOD)-far-red light (FR). In the present work, the EOD-FR effect on GA metabolism and GA levels in cowpea has been investigated. GA1, GA8, GA19 and GA20 were identified in epicotyls, and GA1, GA19, GA20 and GA29-catabolite in leaves of 6-day-old cowpea seedlings. The content of GA1 in the epicotyl paralleled the decrease of its growth rate, supporting the hypothesis that this is the GA bioactive in controlling cowpea epicotyl elongation. FR enhanced both the amount of [3H]GA1 in the epicotyl produced from applied [3H]GA20, and that of applied [3H]GA1 that remained unmetabolized in epicotyl explants, suggesting that Phy may regulate the inactivation of GA1. In agreement with this effect of light on GA1 metabolism, the contents of GA1 in the epicotyl remained higher in FR-treated than in R-treated explants. Moreover, in intact seedlings EOD-FR treatment increased both epicotyl elongation and GA1 content in the responsive epicotyl, whereas it was not altered in the leaves. These results show, for the first time, that photostable Phys modulate the stem elongation in light-grown plants by locally controlling the GA1 levels through regulation of its inactivation.  相似文献   

19.
Abstract: Inhibition and stimulation of adenylyl cyclase by opioid and D1 dopamine or A2a adenosine agonists, respectively, were characterized in the caudate putamen of rats. D1 dopamine receptors have been reported to be localized preferentially on striatonigral neurons and A2a adenosine receptors on striatopallidal neurons. The aim of the present study was to evaluate the effects of μ-[Tyr-d -Ala-Gly-(N-Me)Phe-Gly-ol (DAMGO)], δ1-[Tyr-d -Pen-Gly-Phe-d -Pen (DPDPE)], and δ2- ([d -Ala2]deltorphin-II [DT-II]) opioid agonists on the D1 dopamine receptor- and A2a adenosine receptor-stimulated adenylyl cyclase in membranes from rat caudate putamen. The results show that DAMGO, DPDPE, and DT-II inhibit forskolin-stimulated adenylyl cyclase [selectively antagonized by d -Phe-Cys-Tyr-d -Trp-Orn-Thr-Pen-Thr-NH2 (CTOP; μ antagonist), 7-benzylidenenaltrexone (BNTX; δ1 antagonist), and naltriben (NTB; δ2 antagonist), respectively], but only μ- and δ2-opioid agonists inhibit D1 dopamine-stimulated adenylyl cyclase (antagonized by CTOP and NTB, respectively). Furthermore, DT-II and DPDPE inhibit A2a adenosine-stimulated adenylyl cyclase (antagonized by NTB and BNTX, respectively), whereas DAMGO did not inhibit A2a adenosine-stimulated adenylyl cyclase activity. These results suggest that μ-, δ1-, and δ2-opioid receptors display differential localization and provide neurochemical evidence suggesting the differential location of the δ1 and δ2 subtypes. μ-Opioid receptors may be preferentially expressed by striatonigral neurons, δ1- by striatopallidal neurons, and δ2- by these two striatal efferent neuron populations.  相似文献   

20.
Some snake venom neurotoxins, such as beta-bungarotoxin (beta-BuTX), which possess relatively low phospholipase A2 (PLA2) activity, act presynaptically to alter acetylcholine (ACh) release both in the periphery and in the CNS. In investigating the mechanism of this action, we found that beta-BuTX (5 and 15 nM) inhibited phosphorylation, in both resting and depolarized synaptosomes, of a wide range of proteins, including synapsin I. Naja naja atra PLA2, which has higher PLA2 activity, also inhibited phosphorylation but was less potent than beta-BuTX. At 1 nM, beta-BuTX and N. n. atra PLA2 inhibited phosphorylation of synapsin I only in depolarized synaptosomes. Synaptosomal ATP levels were not affected by 5 or 15 nM beta-BuTX or by 5 nM N. n. atra PLA2. Limited proteolysis, using Staphylococcus aureus V-8 protease, indicated that beta-BuTX inhibited phosphorylation of synapsin I in both the head and the tail regions. The inhibition of phosphorylation was not antagonized by nordihydroguaiaretic acid or indomethacin, suggesting that arachidonic acid derivatives do not mediate this inhibition. Furthermore, inhibition of phosphorylation by beta-BuTX and N. n. atra PLA2 was not altered in the presence of the phosphatase inhibitor okadaic acid, suggesting that stimulation of phosphatase activity is not responsible for this inhibition. Inhibition of protein phosphorylation by PLA2 neurotoxins and enzymes may be associated with an inhibition of ACh release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号