首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Phosphate solubilizing bacteria NBRI0603, NBRI2601, NBRI3246 and NBRI4003 were isolated from the rhizosphere of chickpea and alkaline soils. All four strains demonstrated diverse levels of phosphate solubilization activity under in vitro conditions in the presence of various carbon and nitrogen sources. Acid production may have contributed to phosphate solubilization, but was not the only reason for phosphate release into the medium. Among the four strains, NBRI2601 was the most efficient strain in terms of its capability to solubilize phosphorus in the presence of 10% salt, pH 12, or 45 degrees C. The strains showed varied levels of phosphate solubilization when the effects of different sources of nitrogen were examined during growth. The presence of low levels of Ca(2+) and EDTA in the medium enhanced phosphate solubilization.  相似文献   

2.
Psychrotolerant Pseudomonas isolates (RT5RP2 and RT6RP) isolated from the rhizoplane of wild grass at 3,100 and 3,800 m above mean sea level, respectively, from Rudraprayag district of Uttarakhand (India), were found to solubilize Udaipur rock phosphate (URP). Both isolates grew at temperatures ranging from 4 to 30 °C. Kinetics of phosphate solubilization by the bacterial strains showed a nonlinear regression of the rate of P solubilization, which fitted best in the power model, and showed a declining trend across three different temperatures. Under pot culture conditions, bacterization of lentil seeds (cv. VL Masoor 507) with the psychrotolerant Pseudomonas strains when combined with URP as a sole source of phosphorus resulting in significant enhancement in P uptake of the plants, compared to the application of rock phosphate alone.  相似文献   

3.
A total of 198 bacterial strains were isolated from various niches of saline–alkali soils, out of which 85 strains were able to solubilize phosphate on plates at 30 °C. The strain RMLU-26, identified as Xanthomonas campestris, was the most efficient with its ability to solubilize P, subjected to N-methyl-N′-nitro-N-nitrosoguanidine (NTG) for development of mutants. The P solubilizing ability of X. campestris is reported for the first time. The wild type and mutant strains of X. campestris revealed a differential response to various stress factors (high pH, temperature, and salt concentration). The mutant strain revealed maximum P solubilization (67.1%) at 30 °C and pH 8.0 while the wild type strain showed maximum solubilization (41.9%) at 35 °C and pH 7.0. Percent P2O5 solubilization by both strains revealed a steep decline in tricalcium phosphate solubilization with an increase in NaCl concentration from 0.5 to 10% along with a concomitant drop in pH of the medium from 8.0 to 4.5 in wild type and 4.0 in mutant strain. However, a 1.5- to 2-fold increase in ‘P’ solubilization was observed in the mutant strain when compared to the wild type strain in the presence of NaCl. The overall improved tolerance of the strains to alkalinity and salinity could be due to accumulation and/or secretion of specific solute (xanthan).  相似文献   

4.

Background and Aims

Plant growth-promoting bacteria, mainly diazotrophs and phosphate solubilizers, can reduce the use of chemical fertilizers for rice crops. Here, diazotrophic bacteria isolated from rice were screened for their ability to solubilize inorganic P (Pi) in vitro and in association with rice plants cultivated in pots.

Methods

Forty-nine isolates were tested for the ability to solubilize Pi on NBRIP and GL agar plate media and seven selected strains were further evaluated in NBRIP liquid medium. Three of these strains were inoculated in rice plants grown in soil pots containing 15N-labeled fertilizer and two sources of P: tricalcium phosphate (TCP) or simple superphosphate (SSP). The dry matter, yield, N, P, and the 15N content accumulated in plant tissues were measured at 135 days after planting.

Results

Seven strains belonging to the genera Herbaspirillum and Burkholderia formed a halo of solubilized Pi on agar plates. The Burkholderia strains showed peak soluble P (around 200 mg P L?1) on the fifth day when grown in NBRIP liquid medium for 14 days. Inoculation of Herbaspirillum strains (H18, ZA15) and a Burkholderia vietaminensis strain (AR114) increased rice grain yield from 33 to 47 % with TCP and 18 to 44 % with TSS, respectively. The bacterial inoculation led to enhanced N-use efficiency of the 15N-labeled fertilizer.

Conclusion

These results suggest that the selection and use of P-solubilizing diazotrophic bacteria are a good strategy to promote P solubilization and/or N use efficiency in rice plants.  相似文献   

5.
Phosphate solubilizing bacteria (PSB) play a significant role in plant P nutrition by their effect on soil P dynamics and their subsequent ability to make P available to plants via solubilization and mineralization processes. This study aimed to evaluate the effect of separate and combined use of indigenous PSB, poultry manure (PM) and compost on solubilization and mineralization of rock phosphate (RP) and their subsequent effect on growth and P accumulation of maize (Zea mays L.). A group of fifty seven bacteria were isolated from the rhizosphere/rhizoplane of maize that had been grown in soils collected from varying altitudes (655–2,576 m) of the mountain region of Rawalakot, Azad Jammu and Kashmir, Pakistan. After screening, the capacity of eleven isolates to solubilize mineral phosphate was quantitatively evaluated using insoluble Ca3(PO4)2 in culture medium as a time course study through spectrometer. The growth hormone producing (IAA) capacity of the isolates was also determined. Furthermore, five potential isolates were tested for their ability to increase P release capacity (mineralization) of insoluble RP in an incubation study. The effect of PSB inoculation on maize was determined in a completely randomized greenhouse experiment where root and shoot biomass and P accumulation in plants were assessed. The P solubilization index of selected isolates varied from 1.94 to 3.69, while the P solubilization efficiency ranged between 94.1% and 269.0%. The isolates MRS18 and MRS27 displayed the highest values. The P solubilization in the liquid medium was maximum at 6 and 9 days of incubation ranging between 9.91 and 44.04 µgmL?1 and the isolates MRS27 and MRS34 exhibited the highest solubilization. Six isolates showed additional capability of producing IAA ranging between 2.66 and 28.41 µgmL?1. Results of the incubation study indicated that P release capacity (P mineralization) of RP-amended soil varied between 6.0 and 11.8 µgPg?1 that had been significantly increased to 30.6–36.3 µgPg?1 (maximum value) when PSB were combined with RP. The combined application of PSB and organic amendments (PM, compost) with RP further increased P mineralization by releasing a maximum of 37.7 µgPg?1 compared with separate application of RP (11.8 µgPg?1) and organic amendments (21.5 and 16.5 µgPg?1). The overall effect of PSB (as a group) with RP over RP alone on maize growth showing a relative increase in shoot length 21%, shoot fresh weight 42%, shoot dry weight 24%, root length 11%, root fresh weight 59%, root dry weight 35% and chlorophyll content 32%. This study clearly indicates that use of PSB, and organic amendments with insoluble RP could be a promising management strategy to enhance P availability in soil pool and improve plant growth in intensive cropping systems.  相似文献   

6.
The objectives of the research were to isolate phosphate solubilizing bacteria (PSB) from the rhizoplane of rice (Oryza sativa L.) cv. BRRIdhan 29 cultivated in acidic soils of Tangail in Bangladesh and evaluate their performances in phosphate solubilization in both in vitro and in vivo conditions. A total of 10 bacterial strains were isolated and purified by repeated streak culture on nutrient agar medium. Upon screening, five isolates (OS01, OS03, OS07, OS08 and OS10) showed varying levels of phosphate solubilizing activity in agar plate and broth assays. Among them, the strain OS07 (B1) and two previously isolated PSB strains B2 and B3 were selected for evaluation for their performances in rice alone or in combination of TSP (triple super phosphate: P1) and rock phosphate (P2). Plant height and the number of tillers per plant were significantly increased by all PSB isolates when used in combination with TSP but PSB alone did not influence much on plant height and the number of tillers except B1. The levels of mineral nutrients content in rice plant tissues were generally increased by the application of the PSB in combination with TSP, while the performances of B1 isolate was superior in all aspects to B2 and B3 isolates.  相似文献   

7.
Crossing the Limits of Rhizobium Existence in Extreme Conditions   总被引:1,自引:1,他引:0  
An ecological survey was conducted to characterize 5000 Rhizobium sp. sesbania strains of diverse geographical origin, isolated from the root nodules of Sesbania aculeata growing in neutral (pH 7) and alkaline (pH 8.5 and above) soils. The rhizobia from the alkaline soil showed significantly higher salt tolerance than those isolated from neutral soil. Upper limits of stress survival of rhizobial isolates, Rhizobium sp. NBRI0102 sesbania selected from neutral soil, and Rhizobium sp. NBRI2505 sesbania selected from alkaline soil, were studied under free living conditions. Rhizobium sp. NBRI0102 sesbania and Rhizobium sp. NBRI2505 sesbania tolerated yeast extract mannitol broth (YEB) containing 10% and 28% salt (NaCl, wt/vol) for up to 18 h of incubation at 30°C. Growth of Rhizobium sp. NBRI0102 sesbania and Rhizobium sp. NBRI2505 sesbania at pH 7, 11, and 12 was identical, except for a lag period of about 10 h in the growth of Rhizobium sp. NBRI0102 sesbania at pH 11 and 12, as compared with pH 7. Rhizobium sp. NBRI0102 sesbania and Rhizobium sp. NBRI2505 sesbania survived at 50°C and 65°C, in YEB at pH 7 for up to 4 and 2 h, respectively. To our knowledge, this is the first report of rhizobia demonstrating survival of Rhizobium sp. NBRI2505 sesbania, estimated by counting viable cells, to such extreme conditions of salt and temperature, individually. In contrast to Rhizobium sp. NBRI0102 sesbania, high temperature was tolerated efficiently by Rhizobium sp. NBRI2505 sesbania, in the presence of salt at higher pH. Our results suggest that the possession of the trait of high salt tolerance might be of some evolutionary significance for the survival of rhizobia in alkaline soils, at high pH and temperature. Received: 23 May 2000 / Accepted: 26 June 2000  相似文献   

8.
The study was aimed to develop biofertilizer solubilizing inorganic phosphates for region experiencing temperature, pH and salt stressed conditions. A yeast strain PS4, which was temperature-, pH- and salt-tolerant and capable of solubilizing insoluble inorganic phosphate was isolated from rhizosphere of seabuckthorn (Hippophae rhamnoides L.), growing in the Indian Trans-Himalaya. Based on morphological, biochemical, whole cell FAME analysis and molecular characterization, strain PS4 was identified as Rhodotorula sp. The soluble phosphate production under optimal conditions at pH 7 and 30°C was 278.3 mg l−1. Strain PS4 showed ability to solubilize insoluble phosphate under different stress conditions viz. 5–40°C temperature, 1–5% salt concentration and 3–11 pH range. Soluble phosphate production from Ca3(PO4)2 under combined stress conditions at extreme values of temperature, pH and salt concentration showed 81.6–83.2% reduction as compare to optimal conditions after 5 days incubation. The strain solubilize Ca3(PO4)2 to a great extent than FePO4 and AlPO4. The solubilization of insoluble phosphate was associated with drop in pH of the culture media. Inoculation of tomato seedling with the strain increased fruit yield, roots and shoot length. Rhodotorula sp. PS4 with phosphate-solubilizing ability under stress conditions appeared to be attractive for exploring their plant growth-promoting activity towards the development of microbial inoculants in stressed region.  相似文献   

9.
Twenty-three bacterial isolates were screened for their mineral phosphate–solubilizing (MPS) ability on Pikovskaya and National Botanical Research Institute’s phosphate (NBRIP) agar. The majority of the isolates exhibited a strong ability to solubilize hydroxyapatite in both solid and liquid media. The solubilization in liquid medium corresponded with a decrease in the pH of the medium. Serratia marcescens GPS-5, known for its biocontrol of late leaf spot in groundnut, emerged as the best solubilizer. S. marcescens GPS-5 was subjected to ethyl methanesulfonate (EMS) mutagenesis, and a total of 1700 mutants, resulting after 45 minutes of exposure, were screened on buffered NBRIP medium for alterations in MPS ability compared with that of the wild type. Seven mutants with increased (increased-MPS mutants) and 6 mutants with decreased (decreased-MPS mutants) MPS ability were isolated. All seven increased-MPS mutants were efficient at solubilizing phosphate in both solid and liquid NBRIP medium. Among the increased-MPS mutants, EMS XVIII Sm-35 showed the maximum (40%) increase in the amount of phosphate released in liquid medium compared with wild-type S. marcescens GPS-5, therefore, it would be a useful microbial inoculant in groundnut cultivation. EMS III Sm W, a nonpigmented mutant, showed the lowest solubilization of phosphate among the 6 decreased-MPS mutants.  相似文献   

10.
A study was conducted to examine the growth response of a rhizobial strain Rhizobium sp. NBRI330 isolated from root nodules of Prosopis juliflora growing in alkaline soil. The strain had the ability to nodulate P. juliflora. Nursery grown plants inoculated with Rhizobium sp. NBRI330 had 60.6% higher plant dry weight, as compared with uninoculated plants. The individual stress survival limit of a rhizobial strain Rhizobium sp. NBRI330 isolated from alkaline soil in a medium containing 32% (wt/vol) salt was 8 h, and at 55°C up to 3 h. The length of Rhizobium sp. NBRI330 in salt-stressed cells increased significantly to 3.04 μm from 1.75 μm of non-stressed control cells. On the contrary, the length of pH-stressed cells declined to 1.40 μm. Compared with non-stressed control rod-shaped cells, the shape of temperature-stressed cells changed to spherical, of 0.42 μm diameter. High temperature (45°C) was tolerated efficiently by Rhizobium sp. NBRI330 in the presence of salt at pH 12, as compared with pH 7. Received: 13 September 1999 / Accepted: 14 October 1999  相似文献   

11.
Studies were conducted to elucidate the nature of drought tolerance in the bacterium Rhizobium sp. NBRI2505 sesbania and its transposon Tn5 induced mutant to assess the role of salt, pH, and temperature stresses in contributing to drought tolerance, and to correlate drought tolerance and symbiotic effectiveness. Rhizobium sp. NBRI2505 sesbania tolerated yeast extract mannitol broth (YEB) containing 28% salt (NaCl; wt/vol) for up to 18 h of incubation at 30°C, survived a 2-h incubation in YEB at 65°C, and when subjected to drought stress, tolerated YEB containing 45% polyethylene glycol 6000 (PEG; wt/vol) for up to 5 days of incubation at 30°C. One drought-sensitive mutant Rhizobium sp. NBRI2505 sesbania T112 (T112) containing a single Tn5 insertion was selected after screening about 10,000 clones. T112 was specifically defective in its tolerance for drought: when subjected to drought stress, it tolerated YEB containing 45% PEG for up to 2 days of incubation at 30°C. T122 mutant was also more sensitive to the heat and desiccation stresses, compared with Rhizobium sp. NBRI2505 sesbania in the presence of 45% PEG. Our results demonstrated a positive effect of calcium on the survival of Rhizobium sp. sesbania under acidic stress conditions. The observed enhanced survival at pH 3 of Rhizobium sp. NBRI2505 sesbania and T112 in the presence of 5% CaCO3 suggests the requirement of calcium for growth and survival, which may have an ecological significance in acidic soils. Mutant strain T112 produced ineffective symbiosis with the plant host in the presence of 2.5 and 5% PEG, indicating that drought tolerance is required for effective symbiosis. Received: 11 January 2002 / Accepted: 18 February 2002  相似文献   

12.
The mineral phosphate-solubilizing (MPS) activity of a Pantoea agglomerans strain, namely MMB051, isolated from an iron-rich, acidic soil near Ciudad Piar (Bolívar State, Venezuela), was characterized on a chemically defined medium (NBRIP). Various insoluble inorganic phosphates, including tri-calcium phosphate [Ca3(PO4)2], iron phosphate (FePO4), aluminum phosphate (AlPO4), and Rock Phosphate (RP) were tested as sole sources of P for bacterial growth. Solubilization of Ca3(PO4)2 was very efficient and depended on acidification of the external milieu when MMB051 cells were grown in the presence of glucose. This was also the case when RP was used as the sole P source. On the other hand, the solubilization efficiency toward more insoluble mineral phosphates (FePO4 and AlPO4) was shown to be very low. Even though gluconic acid (GA) was detected on culture supernatants of strain MMB051, a consequence of the direct oxidation pathway of glucose, inorganic-P solubilization seemed also to be related to other processes dependent on active cell growth. Among these, proton release by ammonium (NH4+) fixation appeared to be of paramount importance to explain inorganic-P solubilization mediated by strain MMB051. On the contrary, the presence of nitrate (NO3) salts as the sole N source affected negatively the ability of MMB051 cells to solubilize inorganic P.  相似文献   

13.
Screening soil samples collected from a diverse range of slightly alkaline soil types, we have isolated 22 competent phosphate solubilizing bacteria (PSB). Three isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 hydrolyzed inorganic and organic phosphate compounds effectively. Bacterial growth rates and phosphate solubilization activities were measured quantitatively under various environmental conditions. In general, a close association was evident between phosphate solubilizing ability and growth rate which is an indicator of active metabolism. All three PSB were able to withstand temperature as high as 42°C, high concentration of NaCl upto 5% and a wide range of initial pH from 5 to 11 while hydrolyzing phosphate compounds actively. Such criteria make these isolates superior candidates for biofertilizers that are capable of utilizing both organic and mineral phosphate substrates to release absorbable phosphate ion for plants.  相似文献   

14.
A novel PA Medium (PAM) for efficient screening of phosphate-accumulating organisms (PAOs) was developed taking Serratia marcescens NBRI1213 as model organism. The defined National Botanical Research Institute’s growth medium (NBRI) supplemented with 0.1% maltose, designed for quantitative estimation of phosphate accumulation was designated as PAM. Our work suggested usage of PAM for efficient qualitative screening and as a microbiological medium for preferential selection of PAOs on Petri-plates. For qualitative screening of PAOs, Toluidine blue-O dye (TBO) was supplemented in PAM, designated as PAM-TBO. Qualitative analysis of phosphate accumulated by various groups correlated well with grouping based upon quantitative analysis of PAOs, effect of carbon, nitrogen, salts, and phosphate accumulation-defective transposon mutants. For significantly increasing sample throughput, efficiency of screening PAOs was further enhanced by adaptation of PAM-TBO assay to microtiter plate based method. It is envisaged that usage of this medium will be salutary for quick screening of PAOs from environment.  相似文献   

15.
We have demonstrated in vitro the efficacy of the taurine-conjugated dihydroxy bile salts deoxycholate and chenodeoxycholate in solubilizing both cholesterol and phospholipid from hamster liver bile-canalicular and contiguous membranes and from human erythrocyte membrane. On the other hand, the dihydroxy bile salt ursodeoxycholate and the trihydroxy bile salt cholate solubilize much less lipid. The lipid solubilization by the four bile salts correlated well with their hydrophobicity: glycochenodeoxycolate, which is more hydrophobic than the tauro derivative, also solubilized more lipid. All the dihydroxy bile salts have a threshold concentration above which lipid solubilization increases rapidly; this correlates approximately with the critical micellar concentration. The non-micelle-forming bile salt dehydrocholate solubilized no lipid at all up to 32 mM. All the dihydroxy bile acids are much more efficient at solubilizing phospholipid than cholesterol. Cholate does not show such a pronounced discrimination. Lipid solubilization by chenodeoxycholate was essentially complete within 1 min, whereas that by cholate was linear up to 5 min. Maximal lipid solubilization with chenodeoxycholate occurred at 8-12 mM; solubilization by cholate was linear up to 32 mM. Ursodeoxycholate was the only dihydroxy bile salt which was able to solubilize phospholipid (although not cholesterol) below the critical micellar concentration. This similarity between cholate and ursodeoxycholate may reflect their ability to form a more extensive liquid-crystal system. Membrane specificity was demonstrated only inasmuch as the lower the cholesterol/phospholipid ratio in the membrane, the greater the fractional solubilization of cholesterol by bile salts, i.e. the total amount of cholesterol solubilized depended only on the bile-salt concentration. On the other hand, the total amount of phospholipid solubilized decreased with increasing cholesterol/phospholipid ratio in the membrane.  相似文献   

16.
Phosphorus, an essential element for life, is continuously depleting from soils and thus demands sustainable management particularly in agriculture and forestry. Inorganic P constitutes the major proportion as tricalcium phosphate in soils of lower Himalayan region of Pakistan. We sampled these soils and screened for P-solubilizing microbes. A range of culturable microbial community (bacteria and fungi) was isolated and molecularly characterized which make the P available from mineral phosphates. There was an increase in abundance of phosphate solubilizing bacteria (PSB) at a 6-inch depth of the pine rhizosphere compared to the surface soil samples. Moreover, the isolates from lower Himalaya have higher abundance and better efficiency to solubilize the inorganic P than the ones from non-Himalaya. Most likely the P-solubilization done by our P-solubilizing microbes is via acidification as we observed the decrease in pH of the medium of microbial growth. Furthermore, the majority of isolated PSB belong to gammaproteobacterial class of Gram negative bacteria. Most interestingly, 13% of our isolated PSB were psychrotolerant (physiologically active at cold environment, i.e., 4°C) and able to solubilize inorganic P as efficiently as at ambient temperature. This study is unique in reporting the P-solubilizing microbes, particularly the psychrotolerant bacterial strains, of Lower Himalaya. Therefore the isolated bacterial and fungal strains have potential and may serve as biofertilizers in the region to increase the P availability in soils.  相似文献   

17.
The ability ofRhizobium andBradyrhizobium strains to solubilize phosphate from hydroxyapatite was determined in a medium containing NH4Cl or KNO3. The presence of NH4 + in the medium resulted in higher solubilization of phosphate as compared to the presence of KNO3, with the exception ofR. leguminosarium bv. viceae strain TAL 1236 and 1402 which solubilized comparable amounts of phosphate in a medium containing either KNO3 or NH4Cl. These results suggest that the strains employ two different mechanisms for phosphate solubilization, one depending on the presence of NH4 +, the other not requiring its presence. Temperature and aeration (O2 demand) optima were 30°C and 4.2 Hz (shaking frequency), respectively. In nonsterile soil the tested strain (R. meliloti TAL 1236) was very effective in solubilizing rock phosphate.  相似文献   

18.
The effects of several inorganic salts on the combustion of cigarette and the transfer of nicotine into cigarette smoke have been investigated. Ferric, ferrous, ammonium, magnesium salts and chlorides or sulfates depress the combustibility. Contrary to this, potassium, calcium salts, nitrates and carbonates promote it. The combustion-zone temperatures of cigarettes are within the range from 815°C to 857°C, they are not significantly affected by an addition of inorganic salts. Magnesium nitrate, zinc nitrate and potassium phosphate improve the whiteness of cigarette ash, but the other salts rather darken it. Any relations, however, are not recognized between the whiteness of ash and combustibility of cigarettes. The amounts of nicotine transferred into smoke can be reduced by an addition of inorganic salts, among which magnesium is the most effective.  相似文献   

19.
Abstract

Two native microbial consortia were isolated from the soil and drainage in the phosphate mines, and their abilities to solubilize low-grade rock phosphate (RP) in two different culture media, namely Pikovskaya (PKV) and National Botanical Research Institute’s phosphate (NBRIP) medium, respectively, were estimated. Results showed that the two microbial consortia could grow steadily in the solution and continuously released soluble phosphate from the RP during 14?d of experiments. This process was accompanied by a drop in pH of the solution. The microbial consortium isolated from the soil achieved the largest release of soluble phosphate and pH reduction in the PKV medium among the four microbial consortia named PS, NS, PD, and ND, respectively. Fourier transform infrared spectroscopy (FTIR) analysis of RP indicated that hydroxyl, alkyl C-H bond, amide, and carboxyl were involved in the RP solubilization, and significant changes of them were observed after the experiments. The four microbial consortia were sampled before and after the experiments for the analysis of their bacterial and fungal community structures by Illumina MiSeq sequencing. Results showed that the relative diversities and abundances of the dominant bacteria and fungi varied with different sampling sources (soil and drainage) and culture media (PKV and NBRIP medium).  相似文献   

20.
The use of halotolerant phosphate solubilizing bacteria as inoculants to convert insoluble phosphorus of salt-affected soils to an accessible form is a promising strategy to improve the phosphorus ingestion of plants in salt-affected agriculture. A total of four aerobic isolates with biggest clear halos on the 10% NaCl NBRIP medium plate containing tricalcium phosphate were isolated from the rhizospheric soils of native plants growing on the wall of Dagong Ancinet Brine Well, located in Sichuan of China. And these four isolates were classified to the same strain, named QW10-11, and closely related to Bacillus megatherium var. phosphaticum DSM 3228 and B. megaterium ATCC 14581 according to their phenotype and 16S rRNA. However, the Molecular evolutionary evidences of 16S-23S rRNA ISR further suggested that QW10-11, DSM 3228 and ATCC 14581 have respectively fall into the different sub-divisions in intra specific phylogeny. Strain QW10-11 has significantly better ability of tricalcium phosphate solubilization than that of lecithin solubilization. When it grows under pH 4.8–8.0, 24–33°C and 5–10% NaCl, it can exhibit the higher values of solubilized tricalcium phosphate between 59.3 and 71.4 μg ml−1. Furthermore, its tricalcium phosphate solubilizing activity was associated with the release of organic acids. Taken together, our results indicted that QW10-11 from the rhizospheric soils of halobiot of Dagong Ancinet Brine Well is attractive as efficient phosphate solubilizing candidates in the salt-affected agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号