首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Rats were fed ad libitum on either a standard, high-carbohydrate, chow diet or a similar diet supplemented with 15% unsaturated fat (corn oil). Hepatocytes were prepared either during the dark phase (D6-hepatocytes) or during the light phase (L2-hepatocytes) of the diurnal cycle. In hepatocytes from rats fed on the unsaturated-fat-containing diet, secretion of very-low-density lipoprotein (VLDL) triacylglycerol was inhibited to a greater extent in the D6- than in the L2-hepatocytes. Plasma non-esterified fatty acid concentrations were elevated to the same extent at both D6 and L2 in the unsaturated-fat-fed animals. The secretion of VLDL esterified and non-esterified cholesterol was relatively insensitive to changes in the unsaturated-fat content of the diet. This resulted in proportionate increases in the content of these lipid constituents compared with that of triacylglycerol in the nascent VLDL. There was also an increase in the ratio of esterified to non-esterified cholesterol in the nascent VLDL produced by hepatocytes of the unsaturated-fat-fed animals. In the D6-hepatocytes from the unsaturated-fat-fed animals, the decrease in the secretion of VLDL triacylglycerol could not be reversed by addition of exogenous oleate (0.7 mM) to the incubation medium. In contrast, addition of a mixture of lactate (10 mM) and pyruvate (1 mM) stimulated both fatty acid synthesis de novo and the rate of VLDL triacylglycerol secretion. Secretion of esterified and non-esterified cholesterol also increased under these conditions. Insulin suppressed the secretion of VLDL triacylglycerol and cholesteryl ester under a wide range of conditions in all types of hepatocyte preparations. Non-esterified cholesterol secretion was unaffected. In hepatocytes prepared from the fat-fed animals, these effects of insulin were more pronounced at D6 than at L2. Glucagon also inhibited VLDL lipid secretion in all types of hepatocyte preparations. The decrease in cholesterol secretion was due equally to decreases in the rates of secretion of both esterified and non-esterified cholesterol.  相似文献   

2.
The effect of (-)-hydroxycitrate on the conversion of [1-14C]oleate into cholesterol was dependent on the time of day at which the cells were prepared and on the extracellular oleate concentration. In hepatocytes prepared during the light phase of the diurnal cycle (L2-hepatocytes), (-)-hydroxycitrate inhibited the conversion of L-[U-14C]lactate (2 mM) and of 0.13 mM-[1-14C]oleate into cholesterol. However, when [1-14C]oleate was present at 1.3 mM, most of the sterol carbon was derived from this source, and under these conditions (-)-hydroxycitrate had no inhibitory effect on [14C]cholesterol formation. In these cells, non-radioactive acetoacetate blocked the conversion of 1.3 mM-[1-14C]oleate, but not of 0.13 mM-[1-14C]oleate, into cholesterol. In cells prepared during the dark phase of the diurnal cycle (D6-hepatocytes), irrespective of the concentration of [1-14C]oleate, (-)-hydroxycitrate decreased its conversion into cholesterol. In both types of cell preparation, the inhibitory effect of (-)-hydroxycitrate on the conversion of L-[U-14C]lactate into cholesterol was greater than that on the overall rate of cholesterol production from all endogenous sources. These results provide evidence for the following. (1) The major metabolic route by which oleate is converted into cholesterol is dependent on its extracellular concentration. (2) When oleate is the major source of hepatic sterol carbon, the flux of substrate through citrate into cholesterol is dependent on the nutritional state of the animal. (3) When endogenous substrates are the sole source of sterol carbon, a substantial proportion of the carbon enters the cholesterol pathway through routes not involving citrate cleavage.  相似文献   

3.
Vasopressin and angiotensin II inhibited lipogenesis (measured with 3H2O) in hepatocytes from fed rats. Inhibition was also observed with hepatocytes from fed rats which had been depleted of glycogen in vitro and incubated with lactate + pyruvate (5 mM + 0.5 mM) as substrates. The inhibitory actions of the hormones are therefore independent of hormone-mediated changes in glycogenolytic or glycolytic flux from glycogen, and thus the site(s) of hormone action must be subsequent to the formation of lactate. (-)Hydroxycitrate, a specific inhibitor of ATP-citrate lyase, decreased lipogenesis in hepatocytes from fed rats incubated with lactate + pyruvate by approx. 51% but had little effect on lipogenesis in glycogen-depleted hepatocytes similarly incubated. There was parallel inhibition of incorporation of 14C from [U-14C]lactate into fatty acid and lipogenesis as measured with 3H2O in each case. Thus depletion of glycogen, or conceivably the process of glycogen-depletion (incubation with dibutyryl cyclic AMP) causes a change in the rate-determining step(s) for lipogenesis from lactate. Vasopressin and angiotensin II also decreased lipogenesis and incorporation of 14C into fatty acids in glycogen-depleted hepatocytes provided with [U-14C]proline as opposed to [U-14C]-lactate. However, proline-stimulated lipogenesis was inhibited by (-)hydroxycitrate, and proline-stimulated lipogenesis and incorporation of 14C from [U-14C]-proline were not decreased in parallel by this inhibitor (inhibition of 52% and 85% respectively). It is inferred that lactate and proline stimulate lipogenesis by different mechanisms and incorporation of 14C from [U-14C]proline and [U-14C]lactate into fatty acid occurs via different routes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The very-low-density-lipoprotein secretion rate of isolated hepatocytes obtained from rats fed a high-fat diet was half that of cells from control animals. In fat-fed rats, the initial cellular uptake of [l-14C]oleate in vitro was decreased by 25%, its esterification to triacylglycerols and phospholipids by 50% and its incorporation into very-low-density-lipoprotein triacylglycerols by 70%. Exogenous oleate was not the main precursor of very-low-density lipoproteins in these animals. Lipogenesis, a minor source of very-low-density lipoproteins with the control diet in our experimental conditions, was inhibited by 84% after fat-feeding. A short-term inhibition of lipogenesis in vitro did not result in a decrease in very-low-density-lipoprotein secretion rate. The results suggest that fat-feeding decreased availability of exogenous as well as endogenous fatty acids for synthesis of very-low-density lipoproteins.  相似文献   

5.
The effect of vasopressin on the short-term regulation of fatty acid synthesis was studied in isolated hepatocytes from rats fed ad libitum. Vasopressin stimulates fatty acid synthesis by 30-110%. This increase is comparable with that obtained with insulin. Angiotensin also stimulates fatty acid synthesis, whereas phenylephrine does not. The dose-response curve for vasopressin-stimulated lipogenesis is similar to the dose-response curve for glycogenolysis and release of lactate plus pyruvate. Vasopression also stimulates acetyl-CoA carboxylase activity in a dose-dependent manner. Vasopressin does not relieve glucagon-inhibited lipogenesis, whereas insulin does. The action of vasopressin on hepatic lipogenesis is decreased, but not suppressed, in Ca2+-depleted hepatocytes. The results suggest that vasopressin acts on lipogenesis by increasing availability of lipogenic substrate (lactate + pyruvate) and by activating acetyl-CoA carboxylase.  相似文献   

6.
Proline and hepatic lipogenesis   总被引:1,自引:0,他引:1  
The effects of proline on lipogenesis in isolated rat hepatocytes were determined and compared with those of lactate, an established lipogenic precursor. Proline or lactate plus pyruvate increased lipogenesis (measured with 3H2O) in hepatocytes from fed rats depleted of glycogen in vitro and in hepatocytes from starved rats. Lactate plus pyruvate but not proline increased lipogenesis in hepatocytes from starved rats. ( - )-Hydroxycitrate, an inhibitor of ATP-citrate lyase, partially inhibited incorporation into saponifiable fatty acid of 3H from 3H2O and 14C from [U-14C]lactate with hepatocytes from fed rats. Incorporation of 14C from [U-14C]proline was completely inhibited. Similar complete inhibition of incorporation of 14C from [U-14C]proline by ( - )-hydroxycitrate was observed with glycogen-depleted hepatocytes or hepatocytes from starved rats. Inhibition of phosphoenolpyruvate carboxykinase by 3-mercaptopicolinate did not inhibit the incorporation into saponifiable fatty acid of 3H from 3H2O or 14C from [U-14C]proline or [U-14C]lactate. Both 3-mercaptopicolinate and ( - )-hydroxycitrate increased lipogenesis (measured with 3H2O) in the absence or presence of lactate or proline with hepatocytes from starved rats. The results are discussed with reference to the roles of phosphoenolpyruvate carboxykinase, mitochondrial citrate efflux, ATP-citrate lyase and acetyl-CoA carboxylase in proline- or lactate-stimulated lipogenesis.  相似文献   

7.
Effect of glycerol and dihydroxyacetone on hepatic lipogenesis   总被引:2,自引:0,他引:2  
Glycerol is a dietary component which is metabolized primarily by the liver and kidney where it is used mainly for glucose synthesis. The metabolism of glycerol is very similar to that of dihydroxyacetone which can be considered its more oxidized counterpart. The effects of these substrates on hepatic lipogenesis and gluconeogenesis were examined. In isolated hepatocytes, 10 mM dihydroxyacetone caused a large increase in glucose output and stimulated lipogenesis without affecting the lactate/pyruvate ratio or the total ATP content of the cells. (As compared to dihydroxyacetone, 10 mM glycerol was less effective as a gluconeogenic substrate, increased the lactate/pyruvate ratio, caused a slight decrease in the total ATP content, and inhibited lipogenesis by at least 40% depending on the type of diet fed to the rats.) The fall in ATP levels was very small and did not correlate with the changes in fatty acid synthesis. The immediate cause of the inhibition of lipogenesis, brought about by glycerol in hepatocytes from sucrose fed rats, seemed to be a large decrease in pyruvate levels. This did not result from impairment of glycolysis but from a rise in the cytosolic NADH/NAD ratio.  相似文献   

8.
9.
The regulation of fatty acid synthesis, measured by 3H2O incorporation into fatty acids, was studied in hepatocytes from rats meal-fed a high carbohydrate diet. Ca2+ increased fatty acid synthesis, which became maximal at physiological concentrations of Ca2+. Ethanol markedly inhibited fatty acid synthesis. Maximum inhibition was reached at 4 mm ethanol. However, ethanol did not decrease lipogenesis in the presence of pyruvate. dl-3-Hydroxybutyrate increased fatty acid synthesis. Acetoacetate decreased lipogenesis when used alone and reversed the effect of dl-3-hydroxybutyrate when both were added. dl-3-Hydroxybutyrate moderately decreased flux through the pyruvate dehydrogenase system and markedly inhibited citric acid cycle flux. By measurement of glycolytic intermediates, two ethanol-induced crossover points were observed: one between fructose 6-phosphate and fructose 1,6-diphosphate and the other between glyceraldehyde 3-phosphate and 1,3-diphosphoglycerate. The concentrations of pyruvate and citrate were decreased by ethanol and increased by dl-3-hydroxybutyrate. Aminooxyacetate and l-cycloserine inhibited fatty acid synthesis and these effects were overcome by dl-3-hydroxybutyrate. Results indicate that in hepatocytes in a metabolic state favoring a high rate of lipogenesis, production of reducing equivalents in the cytosol via ethanol metabolism inhibits fatty acid synthesis from glucose by inhibition of both phosphofructokinase and glyceraldehyde 3-phosphate dehydrogenase and by promoting reduction of pyruvate to lactate. Production of reducing equivalents in the mitochondria via dl-3-hydroxybutyrate enhances fatty acid synthesis in liver cells by altering the partition of citrate between oxidation in the citric acid cycle and conversion to fatty acids in favor of the latter pathway. These interactions indicate the importance of the intracellular pyridine nucleotide redox states in the rate control of hepatic fatty acid synthesis.  相似文献   

10.
In rat hepatocytes freshly isolated from donor rats at different times of the day, the rates of lipogenesis (de novo fatty acid synthesis) varied with a diurnal periodicity. The maximal rate occurred approximately 5 hr after the end of the normal 8-hr feeding period and at this time was four- to fivefold higher than the minimum rate which occurred midway through the feeding period. A similar diurnal pattern of change persisted even when the supply of lipogenic substrate, present in the medium as pyruvate, was not limiting. Although insulin stimulated the basal rates of lipogenesis to different relative extents in hepatocytes isolated at different times of the day, in absolute terms the hormone had little effect on the overall pattern of change during the diurnal cycle. The presence of pyruvate protected lipogenesis against inhibition by glucagon. The degree of protection varied over the diurnal cycle. During the early stages of starvation (up to 24 hr) there was a continuous decline in the rate of hepatocyte lipogenesis, irrespective of whether insulin and/or lipogenic substrate (pyruvate) were available or not. After this time the decline in the rate of lipogenesis was much less rapid. Seventeen hr after removal of food from donor rats, a point was reached beyond which pyruvate was incapable of supporting the maximum basal rate of lipogenesis which occurred during the normal diurnal cycle of fed rats. After this time lipogenesis in the presence of pyruvate was inhibited by glucagon to a much greater relative extent than that observed during feeding. The results suggest that variations in the rate of lipogenesis over the diurnal cycle and during the first 24 hr of starvation could not be accounted for entirely by fluctuations in substrate availability. In contrast, changes which occurred subsequent to this (up to 43 hr of starvation) could be eliminated when lipogenic substrate was made more abundant. Longer periods of starvation were marked by a relative increase in the ability of glucagon to prevent the substrate-induced stimulation of lipogenesis.  相似文献   

11.
12.
Dietary regulation of mammary lipogenesis in lactating rats.   总被引:7,自引:7,他引:0       下载免费PDF全文
The proportion of medium-chain fatty acids (C8:0, C10:0 and C12:0) in rat milk increased significantly between day 4 and day 8 of lactation and for the remainder of lactation these acids comprised 40-50mol% of the total fatty acids. The milk fatty acid composition from day 8 was markedly dependent on the presence of dietary fat and altered to include the major fatty acids of the fats (peanut oil, coconut oil and linseed oil). The distribution of fatty acids made within the gland, however, was independent of dietary lipid and C8:0, C10:0 and C12:0 acids accounted for over 70% of the fatty acids made. The rates of lipogenesis in both the mammary gland and liver determined in vivo after the administration of 3H2O were affected by the presence of dietary lipid. In the mammary gland the rate for rats fed a diet containing peanut oil for 7 days was only one fifth that for rats fed a fat-free diet. Coconut oil also suppressed lipogenesis. Both dietary fats also suppressed lipogenesis in the liver.  相似文献   

13.
The effects of dietary cholesterol and fatty acids on the plasma cholesterol level and rates of very low density lipoprotein (VLDL) cholesterol secretion and low density lipoprotein (LDL) transport through LDL receptors in the liver of the hamster were investigated. Increases of plasma VLDL- and LDL-cholesterol levels and VLDL-cholesterol secretion from hepatocytes were observed in animals fed a diet enriched with 0.1% cholesterol for 2 weeks in comparison with animals fed a control diet. The addition of dietary palmitic acid accelerated the effect of dietary cholesterol on plasma VLDL- and LDL-cholesterol levels and VLDL-cholesterol secretion from hepatocytes. Dietary linoleic acid accelerated the effect of dietary cholesterol on VLDL-cholesterol secretion from hepatocytes and diminished the effect on the plasma LDL-cholesterol level. Hepatic LDL receptor activity was considerably suppressed by a control diet containing 0.05% cholesterol and a further small suppression was induced by a diet enriched with 0.1% cholesterol with or without 5% palmitic acid. However, dietary linoleic acid diminished the effect of dietary cholesterol on the suppression of hepatic LDL receptor activity. These results suggest that dietary palmitic acid augments the effect of dietary cholesterol in elevating the plasma LDL-cholesterol level through acceleration of VLDL-cholesterol secretion from the liver, and that dietary linoleic acid diminishes the effect of dietary cholesterol in elevating the plasma LDL-cholesterol level by preventing the suppression of hepatic LDL receptor activity induced by cholesterol.  相似文献   

14.
Using hepatocytes in suspension, freshly isolated from adult male fed rats, we studied the acute influence of recombinant human interleukins 1 alpha, 2 and 6 on glycogen and fatty acid metabolism. By far the largest effects were observed with interleukin-1 alpha: short incubations (up to 60 min) sufficed to depress glycogen synthesis in a dose-dependent manner, while the rates of glycogenolysis and glycolysis were increased as indicated by the release of glucose and lactate. Interleukin-6 acted similarly, though being much less effective on a molar basis, whereas interleukin-2 only caused a small increase in lactate production. In hepatocytes from 24h-starved rats interleukin-1 alpha caused a minor stimulation of gluconeogenesis. Although neither fatty acid synthesis nor oxidation of fatty acids in quiescent hepatocytes from fed rats was significantly affected by interleukins, interleukin-1 alpha was able to cause appreciable inhibition of fatty acid synthesis in hepatocytes from regenerating liver (isolated 22h after partial hepatectomy). It is concluded (i) that interleukins, in particular interleukin-1 alpha, acutely promote hepatic glucose release, and (ii) that transition of adult hepatocytes from a quiescent into a proliferatory state allows the occurrence of rapid effects of interleukin-1 alpha on fatty acid metabolism.  相似文献   

15.
Chicken hepatocytes synthesize glucose and fatty acids at rates which are faster than rat hepatocytes. The former also consume exogenous lactate and pyruvate at a much faster rate and, in contrast to rat hepatocytes, do not accumulate large quantities of lactate and pyruvate by aerobic glycolysis. α-Cyano-4-hydroxycinnamate, an inhibitor of pyruvate transport, causes lactate and pyruvate accumulation by chicken hepatocytes. Glucagon and N6,O2′-dibutyryl adenosine 3′,5′-monophosphate (dibutyryl cyclic AMP) convert pyruvate kinase (EC 2.7.1.40) of rat hepatocytes to a less active form. This effect explains, in part, inhibition of glycolysis, inhibition of lipogenesis, stimulation of gluconeogenesis, and inhibition of the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment by these compounds. In contrast, pyruvate kinase of chicken hepatocytes is refractory to inhibition by glucagon or dibutyryl cyclic AMP. Rat liver is known to have predominantly the type L isozyme of pyruvate kinase and chicken liver predominantly the type K. Thus, only the type L isozyme appears subject to interconversion between active and inactive forms by a cyclic AMP-dependent, phosphorylation-dephos-phorylation mechanism. This explains why the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment of chicken hepatocytes is insensitive to cyclic AMP. However, glucagon and dibutyryl cyclic AMP inhibit net glucose utilization, inhibit fatty acid synthesis, inhibit lactate and pyruvate accumulation in the presence of α-cyano-4-hydroxycinnamate, and stimulate gluconeogenesis from lactate and dihydroxyacetone by chicken hepatocytes. Thus, a site of action of cyclic AMP distinct from pyruvate kinase must exist in the glycolytic-gluconeogenic pathway of chicken liver.  相似文献   

16.
Within 4 h following the addition of 3,3',5 triiodo-L-thyronine to monolayer cultures of hepatocytes isolated from hypothyroid rats, a very distinct stimulation of fatty acid and cholesterol synthesis, measured as incorporation of either [1-14C]acetate or [3H]H2O into these lipid fractions, is observed. A smaller but significant increase in the rate of lipogenesis occurs in hepatocytes derived from euthyroid animals. These stimulatory effects of triiodothyronine are also observed in the presence of cycloheximide, indicating that the described early and direct stimulation of lipogenesis by the thyroid hormone is, at least in part, independent of protein synthesis.  相似文献   

17.
18.
Hepatocytes were prepared from rats fasted 2 days and refed a high carbohydrate diet for 1 day. These cells contained very high levels of glycogen (about half the defatted dry weight) and carried out high rates of lipogenesis (up to 800 micron at tritium incorporation from 3HOH/g (defatted dry weight)/h), even in the absence of added substrates. Pentose cycle flux was estimated by a method involving the use of [1-14C]galactose (Rognstad, R. (1976) Int. J. Biochem. 7, 221-228). In hepatocytes from normal fasted refed rats, the amount of NADPH produced by the pentose cycle was sufficient for about one-half to three-fourths of that required for fatty acid synthesis. 2,4-Dihydroxybutyrate, a malic enzyme inhibitor (Schimerlik, M.I. & Cleland, W.W. (1977) Biochemistry 16, 565-570) markedly depressed the randomization of 14C in lactate from [6-14C]hexoses, indicating an inhibition of the pyruvate cycle. 2,4-Dihydroxybutyrate (10 mM) had only a slight inhibitory effect on overall lipogenesis, but increased the rate of the pentose cycle by 40 to 90%.  相似文献   

19.
The secretion of very-low-density lipoprotein (VLDL) triacylglycerol and cholesterol was determined under various conditions in hepatocytes prepared from rats maintained on a controlled lighting and feeding schedule. The rate of lipogenesis in hepatocytes prepared from rats during the feeding period was 2-3-fold higher than that in cells prepared immediately before the animals had access to food. However, there were no corresponding changes in the rates of secretion of triacylglycerol and cholesterol. Pyruvate alone stimulated triacylglycerol secretion but had no effect on the secretion of cholesterol. Despite its stimulation of lipogenesis, insulin suppressed the secretion of both triacylglycerol and cholesterol. This effect on triacylglycerol secretion was more pronounced when lipogenesis was enhanced in the presence of pyruvate. Thus, insulin may act to alleviate hypertriglyceridaemia, which may arise during periods of increased hepatic lipogenesis. The inhibitory effect of glucagon on cholesterol secretion was much less pronounced than that on the secretion of triacylglycerol. The inhibitory effects of glucagon were reversed by pyruvate on cholesterol secretion differed according to whether glucagon was present or absent. These results suggest that the rate of hepatic VLDL triacylglycerol secretion is not necessarily coupled to the rate of lipogenesis in the liver; nor is there any obligatory coupling between the output of triacylglycerol and cholesterol associated with VLDL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号