首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corneal chromatophores of unusual morphology were used for studies on the influence of temperature on the intracellular pigment movement in two species of marine fish from different temperature zones: the tropical puffer, Canthigaster cinctus, and boreal whitespotted greenling, Hexagrammos stelleri. It was shown that both dispersion under bright illumination and aggregation at darkening are slower or decrease at lower temperatures when examined in the range of 12–27°C. The mean speed of the pigment translocations in the individual cell process was 0.38 μm/s at the highest temperature examined, with a range of 0.17–1.0 μm/s. Near the middle of the temperature range, the dynamic characteristics of cell pigment movement in tropical and boreal species were rather close, suggesting that there would be little divergent adaptations with respect to the mechanisms of the pigment transport. Corneal chromatophores are considered as a new promising model for cell motility studies.  相似文献   

2.
Pigment migration in the eyes of Austrolestes annulosus and Ischnura heterosticta cause pronounced colour changes which superficially resemble those of Odonata epidermal chromatophores. In both species, the migratory pigment is confined to the distal pigment cells of dorsal ommatidia. When the pigment is concentrated around the base of the crystalline cones, a dense layer of Tyndall blue bodies produce bright ‘blue phase’ colours. Distal migration of the pigment disrupts the Tyndall effect and produces ‘dark phase’ (grey-brown) colours. As in chromatophores, eye pigments consist of a mixture of xanthommatin and dihydroxanthommatin together with an additional pigment, possibly ommin A, not found in chromatophores.As with chromatophores, eye pigments respond to change in temperature only, change in light intensity having no effect. The change from blue to dark phase (at 8°C) occurs at the same rate as in chromatophores, whereas the reverse change (at 20°C) is significantly slower. Equilibrium colours at constant temperature are variable but significantly different from those of chromatophores at 12°C and above. There is no diurnal variation in responsiveness as is found in chromatophores.Isolated dark phase eyes or undamaged pieces of eye are able to change to blue phase after temperature increase. Isolated blue phase eyes show little response to temperature decrease, isolated undamaged pieces show no response. A temperature difference between the eyes of the same intact insect may result in minor colour differences. Ablation of the optic tract or of tissue posterior to the optic tract prevents normal colour change from blue to dark phase. The above results indicate that eye pigment cells are structurally similar to Odonata chromatophores and are under similar environmental and physiological control.  相似文献   

3.
Homeotherms are generally considered to lack classical active dermal pigment cells (chromatophores) in their integument, attributable to the development of an outer covering coat of hair or feathers. However, bright colored dermal pigment cells, comparable to chromatophores of lower vertebrates, are found in the irides of many birds. We propose that, because of its exposed location, the iris is an area in which color from pigment cells has sustained a selective advantage and appears to have evolved independently of the general integument. In birds, the iris appears to have retained the potential for the complete expression of all dermal chromatophore types. Differences in cell morphology and the presence of unusual pigments in birds are suggested to be the result of evolutionary changes that followed the divergence of birds from reptiles. By comparison, mammals appear to have lost the potential for producing iridophores, xanthophores, or erythrophores comparable to those of lower vertebrates, even though some species possess brightly colored irides. It is proposed that at least one species of mammal (the domestic cat) has recruited a novel iridial reflecting pigment organelle originally developed in the choroidal tapetum lucidum. The potential presence of classical chromatophores in mammals remains open, as few species with bright irides have been examined.  相似文献   

4.
Homeotherms are generally considered to lack classical active dermal pigment cells (chromatophores) in their integument, attributable to the development of an outer covering coat of hair or feathers. However, bright colored dermal pigment cells, comparable to chromatophores of lower vertebrates, are found in the irides of many birds. We propose that, because of its exposed location, the iris is an area in which color from pigment cells has sustained a selective advantage and appears to have evolved independently of the general integument. In birds, the iris appears to have retained the potential for the complete expression of all dermal chromatophore types. Differences in cell morphology and the presence of unusual pigments in birds are suggested to be the result of evolutionary changes that followed the divergence of birds from reptiles. By comparison, mammals appear to have lost the potential for producing iridophores, xanthophores, or erythrophores comparable to those of lower vertebrates, even though some species possess brightly colored irides. It is proposed that at least one species of mammal (the domestic cat) has recruited a novel iridial reflecting pigment organelle originally developed in the choroidal tapetum lucidum. The potential presence of classical chromatophores in mammals remains open, as few species with bright irides have been examined.  相似文献   

5.
Summary Alterations in cell shape of the light-sensitive chromatophores of Centrostephanus longispinus are described. Upon illumination a centrifugal pigment movement starts within extremely thin filopodia which radiate from the cell body. With continued pigment migration the cellular processes increase in length and diameter and give the cell an irregular stellate appearance. Pigment movement within the cellular processes is discontinuous in space and time and may occur independently in single filopodia. The motion of single granules shows characteristic features of a saltatory movement.  相似文献   

6.
The light-dependent migrations of proximal pigment granules along the photoreceptors of the crayfish compound-eye were studied in isolated retinas and eyestalks. The extent and kinetics of movement in each direction were found quantitatively equivalent to those observed in the organ in situ. These and other features make these cells to appear as intrinsically independent pigmentary effectors, directly responsive to light. During dark adaptation (DA) the pigment migrates away from the cell nucleus and accumulates along the axon in two distinct steps. Each step constitutes half of the total distance of about 180 microns and proceeds at 0.30 micron/sec. Only prolonged metabolic impairment inhibited the first phase, while the second was blocked by hypoxia, cyanide, colchicine, and D2O. The maintenance of a full DA position was also shown to be highly dependent upon metabolism. Light incidence on DA eyes is followed by an apparently monophasic expansion of the pigment from the axon towards the perikaryl region at 0.38 micron/sec. This movement was not affected by any of the foregoing agents and seems to be a passive relaxation process. Cytochalasin B had no effect on either motion. The migration in either direction has an exponential time course and is temperature dependent. Electron microscopy revealed two separate patterns of cytoplasmic organization corresponding to the cell areas where the two phases of DA occur. In the region close to the nucleus the pigment appears irregularly scattered, whereas in the axon the granules are situated arond a thick longitudinal bundle of microtubules. These results suggest the existence of two different mechanisms of pigment granule translocation operating in two separate regions of the retinula cell.  相似文献   

7.
Zusammenfassung Für den physiologischen Farbwechsel bei Vertebraten und Evertebraten gilt die Vorstellung, daß eine Pigmentbewegung innerhalb einer formkonstanten Zelle stattfindet. Am Seeigel Centrostephanus longispinus wird nun der Nachweis einer amoeboiden Bewegung von Pigmentzellen geführt: Die Epidermis von Centrostephanus enthält große braune Chromatophoren, die bei Belichtung eine Pigmentdispersion, bei Verdunkelung eine Konzentration des Pigments zeigen. Die Chromatophoren sind außerordentlich stark verzweigte Zellen, deren Arme dicht mit Pigmentgrana erfüllt sind. Im geballten Zustand ist die allgemeine Zellform mehr oder weniger ovoid, wobei die Zellarme eingezogen und dicht um die Zellmitte angeordnet sind. Dispersion des Pigments wird hervorgerufen durch Ausstrecken der pigmentierten Zellarme in den Interzellularraum des umgebenden Gewebes. Innerhalb der Zelle werden filamentöse Elemente nachgewiesen, die vermutlich für die Zellbeweglichkeit verantwortlich sind. — Ferner wird der zelluläre Aufbau des Integuments beschrieben.
Amoeboid pigment cells in the epithelium of the sea urchin Centrostephanus longispinus A novel colour change mechanism
Summary Rapid colour changes in vertebrate and invertebrate species are considered to be due to movement of pigment granules within pigment cells of constant shape. Evidence is presented in this study to show that an amoeboid movement of chromatophores occurs in the epidermis of the Echinoderm Centrostephanus longispinus. The epidermis in this species contains large brown chromatophores, which display a dispersion of pigment on illumination and its concentration on darkening. The chromatophores are extensively branched cells, and their branches are densely packed with pigment granules. In the state of pigment concentration, the shape of the cell is more or less ovoid, and the cell branches are drawn in and closely arranged around the cell centre. Dispersion is attained by a stretching out of the pigmented cell branches into the intercellular spaces of the surrounding tissue. Within the cell, filamentous elements, which may be functional in the motility of the pigment cell, can be demonstrated.—Additionally the cellular composition of the integument is described.
Mit Unterstützung durch die Deutsche Forschungsgemeinschaft. Frl. A. Mikolaczick danken wir für sorgfältige technische Assistenz.  相似文献   

8.
The changes in cell shape accompanying pigment aggregation and dispersion in the hindgut chromatophores of the shrimp Palaemon affinis Heilprin were investigated by scanning electron microscopy. On the dorsal surface of the hindgut, chromatophores with dispersed pigment appear as flattened discs from which radiate short cell extensions. Chromatophores with aggregated pigment appear as raised hemispherical masses which lack cell extensions. These transformations, the result of the movements of pigment granules and cytoplasm, are discussed in relation to the degree of contact between the chromatophores and the surrounding tissues.  相似文献   

9.
Integumental color changes and eye pigment movements in crustaceansare regulated by pigmentary-effector hormones. The identifiedhormones include: an octapeptide RPCH (red pigment-concentratinghormone) and several forms of octadecapeptide PDH (pigment-dispersinghormone: -PDH, ß-PDH). RPCH-related peptides (AKHs,adipokinetic hormones) and PDH-related peptides (PDFs, pigment-dispersingfactors) occur in insects, and are recognized as members ofAKH/RPCH and PDH/PDF peptide families. The domain for maturepeptide is located between the signal peptide and precursor-relatedpeptide in AKH/RPCH precursors, and at the C-terminal end inthe PDH/PDF precursors. The precursor-related (associated) peptidesin RPCH and PDH precursors in Crustacea show little or no similarityto corresponding domains of AKH and PDF precursors in insects.Although the functions of precursor-related peptides are unknown,the mature peptides are shown to serve diverse functions. RPCH'sactions in crustaceans include: pigment concentration in oneor more types of chromatophores, dark-adaptational screeningpigment movement in distal eye pigment cells, increase of retinalsensitivity, and neuromodulation. The related AKHs largely influencemetabolism in insects, although they serve additional functions.PDHs trigger pigment dispersion in chromatophores and inducelight-adaptational screening pigment movements in extraretinulareye pigment cells. The related PDFs appear to serve as a transmitterof circadian signals in the regulation of biological rhythmsin insects. Evolutionary relationships among the PDH/PDF peptidesand directions for future research are discussed.  相似文献   

10.
Genetics and evolution of pigment patterns in fish   总被引:8,自引:0,他引:8  
Vertebrate pigment patterns are both beautiful and fascinating. In mammals and birds, pigment patterns are likely to reflect the spatial regulation of melanocyte physiology, via alteration of the colour-type of the melanin synthesized. In fish, however, pigment patterns predominantly result from positioning of differently coloured chromatophores. Theoretically, pigment cell patterning might result from long-range patterning mechanisms, from local environmental cues, or from interactions between neighbouring chromatophores. Recent studies in two fish genetic model systems have made progress in understanding pigment pattern formation. In embryos, the limited evidence to date implicates local cues and chromatophore interactions in pigment patterning. In adults, de novo generation of chromatophores and cell-cell interactions between chromatophore types play critical roles in generating striped patterns; orientation of the stripes may well depend upon environmental cues mediated by underlying tissues. Further genetic screens, coupled with the routine characterization of critical gene products, promises a quantitative understanding of how striped patterns are generated in the zebrafish system. Initial 'evo-devo' studies indicate how fish pigment patterns may evolve and will become more complete as the developmental genetics is integrated with theoretical modelling.  相似文献   

11.
The activity, temperature characteristics and energy of activation of amylolytic enzymes in the intestinal mucosa were studied in six species of fish living in a boreal zone [burbot (Lota lota L.), northern pike (Exos lucius L.), perch (Perca fluviatilis L.), bream (Abramis brama L.), roach (Rutilis rutilis L.), and carp (Cyprinus carpio L.)] and in three species from tropical and subtropical areas [pilchard (Sardina pilchardus W.), jack mackerel (Trachurus trecae C.) and round sardinella (Sardinella aurita V.)]. The amylolytic activity correlated with the feeding habits: it was essentially lower in predators. The enzyme activity at low temperature, relative to the maximal activity, was correlated with the natural environmental temperature where the species lived. At low temperature the relative activity was higher in boreal fish than in tropical and subtropical fish. We found a breakpoint in the Arrhenius plots in all fish species, except for jack mackerel. The energy of activation in predators decreased below the breakpoint in the low-temperature region. The energy of activation in benthophages of the Aral-Ponto-Caspian area was lower at higher temperatures above the breakpoint. A reduction in activation energy in the range of physiological temperatures might indicate adaptation to the environmental temperature.  相似文献   

12.
The morphology and organization of chromatophores in the neotropical glass-frog, Centrolenella fleischmanni (family Centrolenidae), were studied with both light and electron microscopes. Four types of pigment cells are described in the dorsal skin. The fine structure of two chromatophores corresponds to the typical amphibian xanthophore and iridophore; one is similar to the unusual melanophore found in phyllomedusine hylids; the fourth cell type is unlike any chromatophore previously described. Pigment granules in the unusual chromatophore are moderately electron-dense and have an irregular shape, suggesting a fluid composition. This pigment appears to be laid down in organelles similar in appearance to pterinosomes. The organization of pigment cells in this species differs from that of other green, leaf-sitting frogs in that there are few discrete groups resembling “dermal chromatophore units.” It is suggested that the unusual new pigment cell contributes significantly to the overall green color of C. fleischmanni.  相似文献   

13.
Temperate and boreal forests are forecast to change in composition and shift spatially in response to climate change. Local‐scale expansions and contractions are most likely observable near species range limits, and as trees are long‐lived, initial shifts are likely to be detected in the understory regeneration layers. We examined understory relative abundance patterns of naturally regenerated temperate and boreal tree species in two size classes, seedlings and saplings, and across two spatial scales, local stand‐scale ecotones (tens of meters) and the regional temperate–boreal transition zone (?250 km) in central North America, to explore indications of climate‐mediated shifts in regeneration performance. We also tested for the presence of strong environmental gradients across local ecotones that might inhibit species expansion. Results showed that tree regeneration patterns across ecotones varied by species and size class, and varied across the regional summer temperature gradient. Temperate tree species regeneration has established across local ecotones into boreal forest patches and this process was facilitated by warmer temperatures. Conversely, boreal conifer regeneration exhibited negative responses to the regional temperature gradient and only displayed high abundance at the boreal end of local ecotones at cool northern sites. The filtering effects of temperature also increased with individual size for both boreal and temperate understory stems. Observed regeneration patterns and the minor environmental gradients measured across local ecotones failed to support the idea that there were strong barriers to potential temperate tree expansion into boreal forest patches. Detectable responses, consistently in the directions predicted for both temperate and boreal species, indicate that summer temperature is likely an important driver of natural tree regeneration in forests across the temperate–boreal transition zone. Regeneration patterns point toward temperate expansion and reduced but continued boreal presence in the near‐future, resulting in local and regional expansions of mixed temperate‐boreal forests.  相似文献   

14.
The chromatophores of Chromatium vinosum, as well as six other photosynthetic bacteria, contained two or more proteins which were insoluble when heated in the presence of sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (beta-ME). When the chromatophores were dissolved at room temperature in SDS-beta-ME, these proteins were present in the SDS-polyacrylamide gel electrophoresis profiles, but when the samples were dissolved at 100 degrees C, they were absent or considerably diminished. When one-dimensional gels of chromatophores solubilized at room temperature were soaked in the SDS-beta-ME solution and heated to 100 degrees C and the gels were run in a second dimension, the proteins became immobilized in the original first-dimension gel, where they could be detected by staining. The two major proteins so affected in C. vinosum had apparent molecular weights of 28,000 and 21,000. The chromatophores of several other photosynthetic bacteria also contained predominant proteins between 30,000 and 19,000 molecular weight, which became insoluble when heated in the presence of SDS and beta-ME. In at least two of the species examined, these appeared to be reaction center proteins. The conditions causing the proteins to become insoluble were complex and involved temperature, SDS concentration, and the presence of sulfhydryl reagents. The chromatophores of four of the Chromatiaceae species and two strains of one of the Rhodospirillaceae species examined had a protein-pigment complex that was visible in SDS-polyacrylamide gel profiles of samples dissolved at room temperature but was absent in samples dissolved at 100 degrees C.  相似文献   

15.
Cream markings aligned along the dorsal region of the female isopod, A. vulgare, were investigated with light and a fluorescence microscope and an electron microscope. Biochemical studies were also carried out. The cream markings were observed in the dorsal integument as a group of cream-colored chromatophores that emit a yellow fluorescence. These chromatophores, which are distinguishable from ommochrome chromatophores, contained numerous granules in the cytoplasm, and these granules (0.6–3.0 μm in length by 0.4–1.5 μm in width) were electron-lucent and spheroidal in shape with a concentric arrangement of membranes. Based on various biochemical analyses, the principal component of the yellow pigment isolated from the cream markings was identified as sepiapterin. These facts revealed that the cream markings are the chromatophores that contain pteridine granules. The males have no cream markings like those of the females, since the cream-colored chromatophores are externally hidden by the ommochrome chromatophore layer. The content of sepiapterin in the males was about two times greater than that in the females. This quantitative difference in sepiapterin content between males and females suggests that the pteridine formation in this pigment cell may be regulated by hormones associated with sex determination.  相似文献   

16.
V A Zakian  B J Brewer  W L Fangman 《Cell》1979,17(4):923-934
Saccharomyces cerevisiae contains 50-100 copies per cell of a circular plasmid called 2 micron DNA. Replication of this DNA was studied in two ways. The distribution of replication events among 2 micron DNA molecules was examined by density transfer experiments with asynchronous cultures. The data show that 2 micron DNA replication is similar to chromosomal DNA replication: essentially all 2 micron duplexes were of hybrid density at one cell doubling after the density transfer, with the majority having one fully dense strand and one fully light strand. The results show that replication of 2 micron DNA occurs by a semiconservative mechanism where each of the plasmid molecules replicates once each cell cycle. 2 micron DNA is the only known example of a multiple-copy, extrachromosomal DNA in which every molecule replicates in each cell cycle. Quantitative analysis of the data indicates that 2 micron DNA replication is limited to a fraction of the cell cycle. The period in the cell cycle when 2 micron DNA replicates was examined directly with synchronous cell cultures. Synchronization was accomplished by sequentially arresting cells in G1 phase using the yeast pheromone alpha-factor and incubating at the restrictive temperature for a cell cycle (cdc 7) mutant. Replication was monitored by adding 3H-uracil to cells previously labeled with 14C-uracil, and determining the 3H/14C ratio for purified DNA species. 2 micron DNA replication did not occur during the G1 arrest periods. However, the population of 2 micron DNA doubled during the synchronous S phase at the permissive temperature, with most of the replication occurring in the first third of S phase. Our results indicate that a mechanism exists which insures that the origin of replication of each 2 micron DNA molecule is activated each S phase. As with chromosomal DNA, further activation is prevented until the next cell cycle. We propose that the mechanism which controls the replication initiation of each 2 micron DNA molecule is identical to that which controls the initiation of chromosomal DNA.  相似文献   

17.
Dermal specialized pigment cells (chromatophores) are thought to be one type of extraretinal photoreceptors responsible for a wide variety of sensory tasks, including adjusting body coloration. Unlike the well-studied image-forming function in retinal photoreceptors, direct evidence characterizing the mechanism of chromatophore photoresponses is less understood, particularly at the molecular and cellular levels. In the present study, cone opsin expression was detected in tilapia caudal fin where photosensitive chromatophores exist. Single-cell RT-PCR revealed co-existence of different cone opsins within melanophores and erythrophores. By stimulating cells with six wavelengths ranging from 380 to 580 nm, we found melanophores and erythrophores showed distinct photoresponses. After exposed to light, regardless of wavelength presentation, melanophores dispersed and maintained cell shape in an expansion stage by shuttling pigment granules. Conversely, erythrophores aggregated or dispersed pigment granules when exposed to short- or middle/long-wavelength light, respectively. These results suggest that diverse molecular mechanisms and light-detecting strategies may be employed by different types of tilapia chromatophores, which are instrumental in pigment pattern formation.  相似文献   

18.
Fish chromatophores from Betta splendens are used as the cytosensor element in the development of a portable microscale device capable of detecting certain environmental toxins and bacterial pathogens by monitoring changes in pigment granule distribution. The adaptation of chromatophores to a microscale environment has required the development of enabling technologies to produce miniaturized culture chambers, to integrate microfluidics for sample delivery, to miniaturize image capture, and to design new statistical methods for image analyses. Betta splendens chromatophores were selected as the cytosensor element because of their moderate size, their toleration of close contact, and most importantly, for their responses to a broad range of chemicals and pathogenic bacteria. A miniaturized culture chamber has been designed that supports chromatophore viability for as long as 3 months, and that can be easily transported without damage to the cells. New statistical methods for image analyses have been developed that increase sensitivity and also decrease the time required for detection of significant changes in pigment granule distribution. Betta chromatophores have been tested for their responses to selected pathogenic bacteria and chemical agents. We discuss in detail the aggregation of pigment granules seen when chromatophores are incubated with Bacillus cereus, a common cause of food poisoning. Also described are the more subtle responses of chromatophores to a class of environmental chemical toxins, polynuclear aromatic hydrocarbons. We show that the chromatophores are able to detect the presence of certain polynuclear aromatic hydrocarbons at concentrations lower than the Environment Protection Agency (EPA) 550.1 standards.  相似文献   

19.
Vital fluorescence staining has been used in conjunction with time- lapse video image intensification microscopy to analyze the distribution and movement of endosomes, lysosomes, and mitochondria in cultured rat ovarian granulosa cells. Exposure of 5-d granulosa cell cultures to pyrene-concanavalin A (P-Con A) or 3,3'- dioctadecylindocarbocyanine-labeled low-density lipoprotein (dil-LDL) at 4 degrees C results in the formation of randomly distributed endosomes 10 min after warming to 37 degrees C that exhibit saltatory motion for 20 min. If granulosa cells are labeled at 4 degrees C with both P-Con A and dil-LDL and warmed to 37 degrees C, both ligands are found within the same endosomes which migrate centripetally to the cell center where label accumulates within phase-dense structures by 60 min. The initial endosome saltations occur over short distances (mean distance = 4.6 micron) with a mean velocity of 0.03 micron/s. Endosome saltations then cease and are followed by a gradual centriptal migration of endosomes to the cell center where they accumulate and fuse with phase-dense structures. The second phase of movement involves a continuous, unidirectional migration of endosomes over distances ranging from 5 to 40 micron at a mean velocity of 0.05 micron/s. Lysosomes were simultaneously visualized as acridine orange-staining, phase-dense structures in control cells and cells exposed to fluorescent ligands. In untreated cells, lysosomes are dispersed throughout the cytoplasm and undergo bidirectional saltations covering a mean distance of 8.7 micron with a mean velocity of 0.3 micron/s. Lysosomes redistribute centripetally to the perinuclear region of the cell by saltatory movement within 20 min of exposure to ligand. Mitochondria were visualized with the fluorescent dye rhodamine 123 in granulosa cells labeled with P-Con A and were found to redistribute to the cell center coincident with endosomes. The microtubule-disrupting agent nocodazole was found to inhibit lysosome saltations and all phases of endosome movement. Taxol, a microtubule-stabilizing agent, partially impaired lysosome movement and led to a redistribution of lysosomes into linear aggregates surrounding the nucleus. Taxol was also found to inhibit endosome movement. The data indicate that (a) endosome movement proceeds initially by saltation and later by a nonsaltatory centripetal migration in association with mitochondria, that (b) lysosomes and endosomes undergo a temporally distinct but spatially similar change in cytoplasmic distribution, and that (c) microtubules are required for the directed translocation of endosomes and lysosomes towards the cell center.  相似文献   

20.
There have been numerous attempts to synthesize the results of local‐scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local‐scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome–driver combinations we have identified as most critical in terms of where local‐scale species richness change studies are lacking include the following: land‐use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local‐scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号