首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
-N-oxalyl-l-,-diaminopropionic acid (l-ODAP) toxicity has been associated with lathyrism; a spastic paraparesis caused by excessive dietary intake of the pulse Lathyrus sativus. We investigated the effect of Lathyrus neurotoxin l-ODAP on protein kinase C (PKC) activity under in vitro conditions. l-ODAP activated phosphorylation activity of purified chick brain PKC. Both lysine-rich (histone III-S) and arginine-rich (protamine sulfate) substrate phosphorylation was enhanced in the presence of l-ODAP. The activation is concentration dependent, and maximal activation is observed at 100 M concentration. Protamine sulfate phosphorylation was enhanced by 47%, whereas histone III-S phosphorylation was enhanced by 50% over PS/PDBu/Ca2+ dependent activity. The nontoxic d-isomer (d-ODAP) did not affect both histone III-S and protamine sulfate phosphorylation activity. These results indicate that l-ODAP taken up by neuronal cells could also contribute to PKC activation and so be associated with toxicity.  相似文献   

2.
1. Previous studies have shown that phorbol esters induce protein kinase C (PKC) mediated phosphorylation of the vesicular acetylcholine transporter (VAChT) and change its interaction with vesamicol. However, it is not clear whether physiological activation of receptors coupled to PKC activation can alter VAChT behavior.2. Here we tested whether activation of kaianate (KA) receptors alters VAChT. Several studies suggest that the cholinergic amacrine cells display KA/AMPA receptors that mediate excitatory input to these neurons. In addition, KA in the chicken retina can generate intracellular messengers with the potential to regulate cellular functions.3. In cultured chicken retina (E8C11) KA reduced vesamicol binding to VAChT by 53%. This effect was potentiated by okadaic acid, a protein phosphatase inhibitor, and was totally prevented by BIM, a PKC inhibitor.4. Phorbol myristate acetate (PMA), but not -PMA, reduced in more than 85% the number of L-[3H]-vesamicol-specific binding sites in chicken retina, confirming that activation of PKC can influence vesamicol binding to chicken VAChT.5. The data show that activation of glutamatergic receptors reduces [3H]-vesamicol binding sites (VAChT) likely by activating PKC and increasing the phosphorylation of the ACh carrier.  相似文献   

3.
Sphingosine is one of a number of cationic amphiphiles that inhibit the activity of protein kinase C (PKC) in commonly used assay conditions. This inhibition occurs only at high concentrations of this amphiphile. In the presence of excess negative charge from oleic acid, the addition of sphingosine surprisingly leads to activation of PKC. The results are explicable in terms of the dual role of charge and lipid phase propensity. When the positive charge on sphingosine is compensated by the negative charge on oleic acid, sphingosine, a hexagonal phase promoting amphiphile, becomes an activator of PKC. This does not occur with a bilayer stabilizing cationic amphiphile, N,N,N-Trimethyl-N'-cholesteryl amido-ethyl ammonium which is an inhibitor of PKC at all mol fractions, as well as in the presence of oleic acid. The results indicate that effects of sphingosine on more complex biological systems should be interpreted with caution because of this dual role of the amphiphile.  相似文献   

4.
M D Bazzi  G L Nelsestuen 《Biochemistry》1987,26(16):5002-5008
The phospholipid selectivity of protein kinase C (PKC) activation was examined by using two substrates, histone and a random copolymer of lysine and serine [poly(lysine, serine)] (PLS), plus phospholipids provided as vesicles or as Triton-mixed micelle preparations. The results indicated that substrate-phospholipid interaction was an essential component of PKC activation and that many in vitro properties of PKC activation are attributable to this interaction. The substrate histone interacted with phospholipid-Triton mixed micelles containing phosphatidylserine (PS), but not with those containing phosphatidylinositol (PI) or phosphatidylglycerol (PG). In direct correlation, only PS-Triton mixed micelles were effective in supporting PKC activity. Also, the minimum PS composition (4 mol % in Triton) required to induce significant histone-PS interaction coincided with the minimum composition required for phosphorylation of histones. Moreover, the PS composition required for maximum activity varied with the histone concentration of the reaction. In contrast to histone, PLS interacted with phospholipid-Triton mixed micelles containing either PS, PI, or PG, and all these mixed micelles supported the phosphorylation of PLS. In fact, by selection of appropriate experimental conditions (e.g., concentration of substrate and phospholipid), any of the three mixed micelles could appear the most effective in supporting PKC activity. Phospholipid vesicles containing PS, PG, or PI were found to interact with both histone and PLS and to support the activity of PKC. Physical properties of the solution and conditions used for preparation of phospholipid vesicles had considerable influence on PKC activation. At high phospholipid concentrations, vesicles containing PS, PI, or PG supported the activity of PKC to essentially the same level, provided that the physical differences among the phospholipid vesicles were minimized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Changes in protein kinase C (PKC) (calcium- and phospholipid-dependent protein kinase) activity in rat liver during different metabolic phases of sepsis were studied. Sepsis was induced by cecal ligation and puncture (CLP). Experiments were divided into three groups: control, early sepsis, and late sepsis. Early and late sepsis refers to those animals sacrificed at 9 and 18 h, respectively, after CLP. Hepatic PKC was extracted and partially purified by ammonium sulfate fractionation and DEAE-cellulose chromatography. PKC activity was assayed based on the rate of incorporation of 32p from [-32P]ATP into histone. The results show that during early sepsis, both membrane-associated and cytosolic PKC activities remained relatively unaltered. During late sepsis, membrane-associated PKC was unaffected while cytosolic PKC activity was decreased by 19.5-34.4%. Kinetic analysis of the data on cytosolic PKC during late phase of sepsis reveals that the Vmax values for ATP, histone, Ca2+, phosphatidylserine, and diacylglycerol were decreased by 23.4, 22.1, 19.5, 25, and 34.4%, respectively, with no changes in their Km values. These data indicate that cytosolic PKC activity was inactivated in rat liver during late hypoglycemic phase of sepsis. Since PKC-mediated phosphorylation plays an important role in regulating hepatic glucose metabolism, an inactivation of cytosolic PKC may contribute to the development of hypoglycemia during late phase of sepsis.  相似文献   

7.
A J Abbott  G L Nelsestuen 《Biochemistry》1987,26(24):7994-8003
Vesicle size can be a very sensitive modulator of protein-membrane association. In addition, reactions at the collisional limit may be characteristic of many types of protein-membrane or protein-receptor interactions. To probe these effects quantitatively, we analyzed the association of blood clotting factor Va light chain (Va-LC) with phospholipid vesicles of 15-150-nm radius. The number of protein binding sites per vesicle was approximately proportional to vesicle surface area. Association rates approached the collisional limit, and the activation energy for the association reaction was 4.5 +/- 0.5 kcal/mol. In agreement with diffusional theory for this type of interaction at the collisional limit, the observed association rate constant for filling all sites was approximately proportional to the inverse of vesicle radius. This general property has important implications for many systems such as blood coagulation including possible slower association rates and higher Km values for reactions involving whole cells relative to those obtained for phospholipid vesicles. Dissociation rate constants for reactions that are near the collisional limit should also be proportional to the inverse of vesicle size if diffusional parameters are the only factors influencing dissociation. However, Va-LC bound to small unilamellar vesicles (SUVs, less than or equal to 15-nm radius) gave slower dissociation rates than Va-LC bound to large unilamellar vesicles (LUVs, greater than or equal to 35-nm radius). This indicated a change in KI, the intrinsic protein-phospholipid affinity constant for LUVs vs SUVs. The cumulative effect of association and dissociation rates resulted in higher affinity of Va-LC for SUVs than LUVs under equilibrium conditions. The latter was corroborated by competition binding studies. Furthermore, the temperature dependence of both rate constants indicated an entirely entropy-driven binding to LUVs but a largely enthalpy-driven binding to SUVs. Interactions which are largely entropic are thought to be ionic in nature. The differences observed between binding to LUVs and SUVs may reflect thermodynamic differences between these types of phospholipid structures.  相似文献   

8.
The mechanism by which calmodulin and troponin C influence phosphorylation of troponin I (TnI) by protein kinase C was investigated. The phosphorylation of TnI by protein kinase C requires the presence of acidic phospholipid, calcium and diacylglycerol. Light scattering intensity and fluorescence intensity experiments showed that TnI associated with the phospholipid membranes and caused extensive aggregation. In the presence of Ca2+, TnI-phospholipid interactions were prevented by approximately stoichiometric amounts of either troponin C or calmodulin. Troponin C was shown to completely inhibit phosphorylation of TnI by either protein kianse C or by phosphorylase b kinase. In contrast, calmodulin completely inhibited phosphorylation of TnI by protein kinase C, but had only little effect on TnI phosphorylation by phosphorylase b kinase. Inhibition by calmodulin did not appear to be due to interaction with PKC, since calmodulin mildly increased protein kinase C phosphorylation of histone III-S. The ratio of phosphoserine to phosphothreonine in protein kinase C-phosphorylated TnI remained approximately constant for reactions inhibited by up to 90% by clamodulin. TnI interactions with phospholipid and phosphorylation of TnI by PKC were also prevented by high salt concentrations. However, salt concentrations adequate to inhibit phosphorylation were sufficient to dissociate only TnI, but not protein kinase C from the membrane. These results suggest that the binding of TnI to phospholipid is required for phosphorylation by protein kinase C and that prevention of this binding by any means completely inhibited phosphorylation of TnI by protein kinase C.  相似文献   

9.
A 25-amino acid peptide, containing the four protein kinase C (PKC) phosphorylation sites and the calmodulin (CaM) binding domain of the myristoylated alanine-rich C kinase substrate (MARCKS) protein, has been synthesized and used to determine the effects of phosphorylation on its binding and regulation of CaM. PKC phosphorylation of this peptide (3.0 mol of Pi/mol of peptide) produced a 200-fold decrease in its affinity for CaM. PKC phosphorylation of the peptide resulted in its dissociation from CaM over a time course that paralleled the phosphorylation of 1 mol of serine/mol of peptide. The peptide inhibited CaM's binding to myosin light chain kinase and CaM's stimulation of phosphodiesterase and calcineurin. PKC phosphorylation of the peptide resulted in a rapid release of bound CaM, allowing its subsequent binding to myosin light chain kinase (t1/2 = 1.6 min), stimulation of phosphodiesterase (t1/2 = 1.2 min) and calcineurin (t1/2 = 1.7 min). Partially purified MARCKS protein produced a similar inhibition of CaM-phosphodiesterase which was reversed by PKC phosphorylation. PKC phosphorylation of the peptide occurred primarily at serine 8 and serine 12, and phosphorylation of serine 12 regulated peptide affinity for CaM. Thus, PKC phosphorylation of the peptide and the MARCKS protein results in the rapid release of CaM and the subsequent activation of CaM-dependent enzymes. This process might allow for interplay between PKC and CaM-dependent signal transduction pathways.  相似文献   

10.
A protein kinase (ATP: histone phosphotransferase) with high specificity for the phosphorylation of the very lysine-rich histone H1 has been partially purified and characterized from soybean hypocotyl. The enzyme has a molecular weight of about 48,500. Its activity and sedimentation behavior are refractory to cyclic nucleoside monophosphates. No significant amount of cyclic AMP or cyclic GMP binding activity could be detected in the crude or partially purified enzyme preparations. Km for ATP and histone H1 are 0.4 μM and 0.7 μM, respectively. The enzyme requires Mg2+ or Mn2+ for activity, while addition of 0.5 mM Ca2+, Zn2+ or Hg2+ results in 50% inhibition. Arginine-rich histones H3 and H4 are inhibitory to histone H1 phosphorylation; these histones affect the Vmax of the enzyme, but not the Km for histone H1.  相似文献   

11.
This paper describes a new method for enhancing the interaction of liposomes with cells. A novel class of cationic poly(ethyleneglycol) (PEG)-lipid (CPL) conjugates have been characterized for their ability to insert into pre-formed vesicles and enhance in vitro cellular binding and uptake of neutral and sterically-stabilized liposomes. The CPLs, which consist of a distearoylphosphatidylethanolamine (DSPE) anchor, a fluorescent dansyl moiety, a heterobifunctional PEG polymer (M(r) 3400), and a cationic headgroup composed of lysine derivatives, have been described previously [Bioconjug. Chem. 11 (2000) 433]. Five separate CPL, possessing 1-4 positive charges in the headgroup (referred to as CPL(1)-CPL(4), respectively), were incubated (as micellar solutions) in the presence of neutral or sterically-stabilized cationic large unilamellar vesicles (LUVs), and were found to insert into the external leaflet of the LUVs in a manner dependent on temperature, time, CPL/lipid ratio, and LUV composition. For CPL/lipid molar ratios < or =0.1, optimal insertion levels of approximately 70% of initial CPL were obtained following 3 h at 60 degrees C. The insertion of CPL resulted in aggregation of the LUVs, as assessed by fluorescence microscopy, which could be prevented by the presence of 40 mM Ca(2+). The effect of CPL-insertion on the binding of LUVs to cells was examined by fluorescence microscopy and quantified by measuring the ratio of rhodamine fluorescence to protein concentration. Neither control LUVs or LUVs containing CPL(2) displayed significant uptake by BHK cells. However, a 3-fold increase in binding was observed for LUVs possessing CPL(3), while for CPL(4)-LUVs values as high as 10-fold were achieved. Interestingly, the increase in lipid uptake did not correlate with total surface charge, but rather with increased positive charge density localized at the CPL distal headgroups. These results suggest that incorporation of CPLs into existing liposomal drug delivery systems may lead to significant improvements in intracellular delivery of therapeutic agents.  相似文献   

12.
Reactive oxygen species (ROS) mediated modulation of signal transduction pathways represent an important mechanism of cell injury and barrier dysfunction leading to the development of vascular disorders. Towards understanding the role of ROS in vascular dysfunction, we investigated the effect of diperoxovanadate (DPV), derived from mixing hydrogen peroxide and vanadate, on the activation of phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). Addition of DPV to BPAECs in the presence of .05% butanol resulted in an accumulation of [32P] phosphatidylbutanol (PBt) in a dose- and time-dependent manner. DPV also caused an increase in tyrosine phosphorylation of several protein bands (Mr 20-200 kD), as determined by western blot analysis with antiphosphotyrosine antibodies. The DPV-induced [32P] PBt-accumulation was inhibited by putative tyrosine kinase inhibitors such as genistein, herbimycin, tyrphostin and by chelation of Ca2+ with either EGTA or BAPTA, however, pretreatment of BPAECs with the inhibitor PKC bisindolylmaleimide showed minimal inhibition. Also down-regulation of PKC and , the major isotypes of PKC in BPAECs, by TPA ( 100 nM, 18 h) did not attenuate the DPV-induced PLD activation. The effects of putative tyrosine kinase and PKC inhibitors were specific as determined by comparing [32P] PBt formation between DPV and TPA. In addition to tyrosine kinase inhibitors, antioxidants such as N-acetylcysteine and pyrrolidine dithiocarbamate also attenuated DPV-induced protein tyrosine phosphorylation and PLD stimulation. These results suggest that oxidation, prevented by reduction with thiol compounds, is involved in DPV-dependent protein tyrosine phosphorylation and PLD activation.  相似文献   

13.
Bovine brain contains two calmodulin-dependent phosphodiesterase kinases which are separated on Sephacryl S-300 column. One of these kinases has been purified to homogeneity and shown to belong to the calmodulin-dependent protein kinase II family. Phosphorylation of the 63 kDa phosphodiesterase by this purified protein kinase results in the incorporation of 1.0 mol phosphate per mol subunit and an accompanying increase in Ca2+ concentrations required for the phosphodiesterase activation by calmodulin. The protein kinase undergoes autophosphorylation to incorporate 1.0 mol phosphate per mol of subunit of the enzyme and the autophosphorylated enzyme is active, independent of the presence of Ca2+. The autophosphorylation reaction as well as the protein kinase reaction are rendered Ca2+ independent in less than 15 seconds when approximately one mol phosphate per mol protein kinase is incorporated. The result suggests that activation of phosphodiesterase phosphorylation reaction may occur prior to the activation of phosphodiesterase and phosphatase during a cell Ca2+ flux via the protein kinase autophosphorylation mechanism.Abbreviations SDS sodium dodecyl sulfate - EGTA ethylene glycol bis (-aminoethyl ether) - N,N,N,N tetra acetic acid - EDTA ethylenediamine-tetraacetic acid - cAMP cyclic adenosine 35 monophosphate This work is supported by grants from the Medical Research Council of Canada (JHW), the Heart and Stroke Foundation of Alberta (JHW and RKS) and the Heart and Stroke Foundation of Saskatchewan (RKS)  相似文献   

14.
Calcium/phosphatidylserine-dependent protein kinase C (PKC) is activated by phosphatidylinositol 4,5-bisphosphate (PIP2), as well as by diacylglycerol (DG) and phorbol esters. Here we report that PIP2, like DG, increases the affinity of PKC for Ca2+, and causes Ca(2+)-dependent translocation of the enzyme from the soluble to a particulate fraction (liposomes). Phosphatidylinositol 4-phosphate (PIP) also displaces phorbol ester from PKC and causes Ca(2+)-dependent translocation of the enzyme to liposomes, but is much less efficient than PIP2, and a much weaker activator, with a histone phosphorylation v(PIP)/v(PIP2) of approximately 0.15. Scatchard analysis indicates competitive inhibition between PIP and phorbol ester with Ki(PIP) = 0.26 mol% as compared with Ki(PIP2) = 0.043 mol%. No effect of phosphatidylinositol (PI) on phorbol ester binding to PKC, translocation of PKC, or activation of PKC was observed. These results suggest that both PIP and PIP2 can complex with PKC, but full activation of the enzyme takes place only when PIP is converted to PIP2. We suggest that an inositide interconversion shuttle has a role in the regulation of protein phosphorylation.  相似文献   

15.
S A Goueli  J A Hanten  K Ahmed 《FEBS letters》1991,282(2):445-448
Heparin was found to stimulate the phosphorylation of histone H1 but not protamine sulfate catalyzed by Ca2+/phospholipid-dependent protein kinase (protein kinase C or PKC). The effect of heparin on histone H1 phosphorylation appeared to be due to an increase in phosphatidylserine affinity for PKC activation in the presence of heparin. This effect of heparin was abolished when trypsinized, cofactor-independent, PKC was employed to phosphorylate histone H1. These studies suggest that heparin acts at the regulatory domain of PKC, and emphasize the importance of the negative charge in influencing the accessibility of the substrate to PKC action.  相似文献   

16.
The heat-stable enterotoxin STa of E. coli causes diarrhea by binding to and stimulating intestinal membrane-bound guanylyl cyclase, triggering production of cyclic GMP. Agents which stimulate protein kinase C (PKC), including phorbol esters, synergistically enhance STa effects on cGMP and secretion. We investigated whether PKC causes phosphorylation of the STa receptor in vivo and in vitro.Immunoprecipitation of the STa receptor-guanylyl cyclase was carried out from extracts of T84 colon cells metabolically labelled with [32P]-phosphate using polyclonal anti-STa receptor antibody. The STa receptor was phosphorylated in its basal state, and 32P content in the 150 kDa holoreceptor band increased 2-fold in cells exposed to phorbol ester for 1 h. In vitro, immunopurified STa receptor was readily phosphorylated by purified rat brain PKC. Phosphorylation was inhibited 40% by 5 M of a synthetic peptide corresponding to the sequence around Ser1029 of the STa receptor, a site previously proposed as a potential PKC phosphorylation site. Treatment of the immunopurified STaR/GC with purified PKC increased STa-stimulated guanylyl cyclase activity 2-fold. We conclude that PKC phosphorylates and activates the STa receptor/guanylyl cyclase in vitro and in vivo; Ser1029 of the STaR/GC remains a candidate phosphorylation site by PKC.Abbreviations STa the heat-stable enterotoxin of E. coli, which has also been called ST-I and STp. The 18 amino acid variant was used throughout - PBS phosphate-buffered saline - PDB 4--12, 13-phorbol dibutyrate - ANP atrial natriuretic peptide - STaR/GC STa receptor/guanylyl cyclase, also called GC-C - PKC protein kinase C  相似文献   

17.
We studied 3H-glycine and 3H-strychnine specific binding to glycine receptor (GlyR) in intact isolated frog retinas. To avoid glycine binding to glycine uptake sites, experiments were performed at low ligand concentrations in a sodium-free medium. The binding of both radiolabeled ligands was saturated. Scatchard analysis of bound glycine and strychnine revealed a KD of 2.5 and 2.0 M, respectively. Specific binding of glycine was displaced by -alanine, sarcosine, and strychnine. Strychnine binding was displaced 50% by glycine, and sarcosine. Properties of the strychnine-binding site in the GlyR were modified by sarcosine. Binding of both radioligands was considerably reduced by compounds that inhibit or activate adenylate cyclase and increased cAMP levels. A phorbol ester activator of PKC remarkably decreased glycine and strychnine binding. These results suggest modulation of GlyR in response to endogenous activation of protein kinases A and C, as well as protein phosphorylation modulating GlyR function in retina.  相似文献   

18.
The elevation of [cAMP]i is an important mechanism of platelet inhibition and is regulated by the opposing activity of adenylyl cyclase and phosphodiesterase (PDE). In this study, we demonstrate that a variety of platelet agonists, including thrombin, significantly enhance the activity of PDE3A in a phosphorylation-dependent manner. Stimulation of platelets with the PAR-1 agonist SFLLRN resulted in rapid and transient phosphorylation of PDE3A on Ser312, Ser428, Ser438, Ser465, and Ser492, in parallel with the PKC (protein kinase C) substrate, pleckstrin. Furthermore, phosphorylation and activation of PDE3A required the activation of PKC, but not of PI3K/PKB, mTOR/p70S6K, or ERK/RSK. Activation of PKC by phorbol esters also resulted in phosphorylation of the same PDE3A sites in a PKC-dependent, PKB-independent manner. This was further supported by the finding that IGF-1, which strongly activates PI3K/PKB, but not PKC, did not regulate PDE3A. Platelet activation also led to a PKC-dependent association between PDE3A and 14-3-3 proteins. In contrast, cAMP-elevating agents such as PGE1 and forskolin-induced phosphorylation of Ser312 and increased PDE3A activity, but did not stimulate 14-3-3 binding. Finally, complete antagonism of PGE1-evoked cAMP accumulation by thrombin required both Gi and PKC activation. Together, these results demonstrate that platelet activation stimulates PKC-dependent phosphorylation of PDE3A on Ser312, Ser428, Ser438, Ser465, and Ser492 leading to a subsequent increase in cAMP hydrolysis and 14-3-3 binding.Upon vascular injury, platelets adhere to the newly exposed subintimal collagen and undergo activation leading to platelet spreading to cover the damaged region and release of thrombogenic factors such as ADP and thromboxane A2. In addition, platelets are activated by thrombin, which is generated as a result of activation of the coagulation pathway, and stimulates platelets by cleaving the protease-activated receptors (PAR),2 PAR-1 and PAR-4. The final common pathway is the exposure of fibrinogen binding sites on integrin αIIbβ3 resulting in platelet aggregation and thrombus formation.Thrombin-mediated cleavage of PARs leads to activation of phospholipase C β (PLC), hydrolysis of phosphatidylinositol (PI) 4,5-bisphosphate and a subsequent increase in [Ca2+]i and activation of protein kinase C (PKC). Protein kinase C contributes to platelet activation both directly, through affinity regulation of the fibrinogen receptor, integrin αIIbβ3 (1), and indirectly by enhancing degranulation (2). Thrombin also stimulates activation of PI 3-kinases and subsequent generation of PI (3, 4, 5) trisphosphate and PI (3, 4) bisphosphate (3), which recruit protein kinase B (PKB) to the plasma membrane where it becomes phosphorylated and activated.Platelet activation is opposed by agents that raise intracellular 3′-5′-cyclic adenosine monophosphate ([cAMP]i). cAMP is a powerful inhibitory second messenger that down-regulates platelet function by interfering with Ca2+ homeostasis, degranulation and integrin activation (4). Synthesis of cAMP is stimulated by mediators such as prostaglandin I2 (PGI2), which bind to Gs-coupled receptors leading to activation of adenylate cyclase (AC). This inhibitory pathway is opposed by thrombin, which inhibits the elevation of cAMP indirectly via autocrine activation of the Gi-coupled ADP receptor P2Y12. cAMP signaling is terminated by hydrolysis to biologically inert 5′-AMP by 3′-phosphodiesterases. Platelets express two cAMP phosphodiesterase isoforms, cGMP-stimulated PDE2 and cGMP-inhibited PDE3A. PDE3A is the most abundant isoform in platelets and has a ∼250-fold lower Km for cAMP than PDE2 (4). As a consequence of these properties, PDE3A exerts a greater influence on cAMP homeostasis, particularly at resting levels. The importance of PDE3A in platelet function is further emphasized by the finding that the PDE3A inhibitors cilostamide and milrinone raise basal cAMP levels and strongly inhibit thrombin-induced platelet activation (5). Furthermore, PDE3A-/- mice demonstrate increased resting levels of platelet cAMP and are protected against a model of pulmonary thrombosis (6). In contrast, the PDE2 inhibitor EHNA has no significant effect on cAMP levels and platelet aggregation (7, 8). The activity of PDE3A is therefore essential to maintain low equilibrium levels of cAMP and determine the threshold for platelet activation (7).Like its paralogue PDE3B, it has recently become clear that PDE3A activity can be positively regulated by phosphorylation in platelets and human oocytes (9, 10). There is some evidence that PKB may be involved in this regulation, although the phosphorylation sites are poorly characterized. In contrast, phosphorylation of PDE3A in HeLa cells was stimulated by phorbol esters and blocked by inhibitors of PKC (11). In this study, we aimed to identify the signaling pathways and phosphorylation sites that are involved in regulation of platelet PDE3A. Here, we show strong evidence that PKC, and not PKB, is involved in agonist-stimulated PDE3A phosphorylation on Ser312, Ser428, Ser438, Ser465, and Ser492, leading to an increase in PDE3A activity, 14-3-3 binding and modulation of intracellular cAMP levels.  相似文献   

19.
α-Tocopherol augmentation in human neutrophils was investigated for effects on neutrophil activation and tyrosine phosphorylation of proteins, through its modulation of protein kinase C (PKC) and tyrosine phosphatase activities. Incubation of neutrophils with α-tocopherol succinate (TS) resulted in a dose-dependent incorporation into cell membranes, up to 2.5 nmol/2 × 106 cells. A saturating dose of TS (40 μmol/l) inhibited oxidant production by neutrophils stimulated with phorbol myristate acetate (PMA) or opsonized zymosan (OZ) by 86 and 57%, as measured by luminol-amplified chemiluminescence (CL). With PMA, TS inhibited CL generation to a similar extent to staurosporine (10 nmol/l) or genistein (100 μmol/l), and much more than Trolox (40 μmol/l). With OZ, TS inhibited CL to a similar extent to Trolox. Neutrophil PKC activity was inhibited 50% or more by TS or staurosporine. The enzyme activity was unaffected by genistein or Trolox, indicating a specific interaction of α-tocopherol. TS or Trolox increased protein tyrosine phosphorylation in resting neutrophils, and as with staurosporine further increased tyrosine phosphorylation in PMA-stimulated neutrophils, while the tyrosine kinase (TK) inhibitor genistein diminished phosphorylation. These effects in resting or PMA-stimulated neutrophils were unrelated to protein tyrosine phosphatase (PTP) activities, which were maintained or increased by TS or Trolox. In OZ-stimulated neutrophils, on the other hand, all four compounds inhibited the increase in tyrosine-phosphorylated proteins. In this case, the effects of pre-incubation with TS or Trolox corresponded with partial inhibition of the marked (85%) decrease in PTP activity induced by OZ. These results indicate that α-tocopherol inhibits PMA-activation of human neutrophils by inhibition of PKC activity, and inhibits tyrosine phosphorylation and activation of OZ-stimulated neutrophils also through inhibition of phosphatase inactivation.  相似文献   

20.
Annexin II tetramer (A-IIt) is a member of the annexin family of Ca2+ and phospholipid-binding proteins. The ability of this protein to aggregate both phospholipid vesicles and chromaffin granules has suggested a role for the protein in membrane trafficking events such as exocytosis. A-IIt is also a major intracellular substrate of both pp60src and protein kinase C; however, the effect of phosphorylation on the activity of this protein is unknown. In the current report we have examined the effect of phosphorylation on the lipid vesicle aggregation activity of the protein. Protein kinase C catalyzed the incorporation of 2.1 +/- 0.8 mol of phosphate/mol of A-IIt. Phosphorylation of A-IIt caused a dramatic decrease in the rate and extent of lipid vesicle aggregation without significantly effecting Ca(2+)-dependent lipid binding by the phosphorylated protein. Phosphorylation of A-IIt increased the A50%(Ca2+) of lipid vesicle aggregation from 0.18 microM to 0.65 mM. Activation of A-IIt phosphorylation, concomitant with activation of lipid vesicle aggregation, inhibited both the rate and extent of lipid vesicle aggregation but did not cause disassembly of the aggregated lipid vesicles. These results suggest that protein kinase C-dependent phosphorylation of A-IIt blocks the ability of the protein to aggregate phospholipid vesicles without affecting the lipid vesicle binding properties of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号