首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Low-oxygen induction of normally cryptic psbA genes in cyanobacteria   总被引:1,自引:0,他引:1  
Summerfield TC  Toepel J  Sherman LA 《Biochemistry》2008,47(49):12939-12941
  相似文献   

6.
7.
8.
The biogenesis of photosystem II, one of the major photosynthetic protein complexes, involves a cascade of assembly-governed regulation of translation of its major chloroplast-encoded subunits. In Chlamydomonas reinhardtii, the presence of the reaction center subunit D2 is required for the expression of the other reaction center subunit D1, while the presence of D1 is required for the expression of the core antenna subunit apoCP47. Using chimeric genes expressed in the chloroplast, we demonstrate that the decreased synthesis of D1 or apoCP47 in the absence of protein assembly is due to a genuine downregulation of translation. This regulation is mediated by the 5' untranslated region of the corresponding mRNA and originates from negative feedback exerted by the unassembled D1 or apoCP47 polypeptide. However, autoregulation of translation of subunit D1 is not implicated in the recovery from photoinhibition, which involves an increased translation of psbA mRNA in response to the degradation of photodamaged D1. De novo synthesis and repair of photosystem II complexes are independently controlled.  相似文献   

9.
10.
11.
12.
13.
14.
The plastid psbA mRNA is present in all tissues, while the encoded 32 kDa D1 protein of photosystem II accumulates tissue-specifically and in response to light. To study the regulation of D1 accumulation, a chimeric uidA gene encoding beta-glucuronidase (GUS) under control of the psbA 5'- and 3'-regulatory regions (224 and 393 bp, respectively), was integrated into the tobacco plastid genome. A high level of GUS accumulation in leaves and the lack of GUS in roots, with uidA mRNA present in both tissues, indicated tissue-specific accumulation of the chimeric gene product. Light-regulated accumulation of GUS in seedlings was shown. (i) Light-induced accumulation (100-fold) of GUS in etiolated cotyledons was accompanied by only a modest increase in mRNA levels. (ii) Inhibition of GUS synthesis was observed in cotyledons when light-grown seedlings were transferred to the dark, with no reduction in mRNA levels. Tissue-specific and light-regulated accumulation of GUS indicates that D1 accumulation is controlled via cis-acting regulatory elements in the untranslated region of the psbA mRNA. We propose that in tobacco, control of translation initiation is the primary mechanism regulating D1 protein accumulation.  相似文献   

15.
16.
17.
ABSTRACT: BACKGROUND: The photosynthetic oxygen-evolving photo system II (PS II) produces almost the entire oxygen in the atmosphere. This unique biochemical system comprises a functional core complex that is encoded by psbA and other genes. Unraveling the evolutionary dynamics of this gene is of particular interest owing to its direct role in oxygen production. psbA underwent gene duplication in leptosporangiates, in which both copies have been preserved since. Because gene duplication is often followed by the non-fictionalization of one of the copies and its subsequent erosion, preservation of both psbA copies pinpoint functional or regulatory specialization events. The aim of this study was to investigate the molecular evolution of psbA among fern lineages. RESULTS: We sequenced psbA, which encodes D1 protein in the core complex of PSII, in 20 species representing 8 orders of extant ferns; then we searched for selection and convolution signatures in psbA across the 11 fern orders. Collectively, our results indicate that: (1) selective constraints among D1 protein relaxed after the duplication in 4 leptosporangiate orders; (2) a handful positively selected codons were detected within species of single copy psbA, but none in duplicated ones; (3) a few sites among D1 protein were involved in co-evolution process which may intimate significant functional/structural communications between them. CONCLUSIONS: The strong competition between ferns and angiosperms for light may have been the main cause for a continuous fixation of adaptive amino acid changes in psbA, in particular after its duplication. Alternatively, a single psbA copy may have undergone bursts of adaptive changes at the molecular level to overcome angiosperms competition. The strong signature of positive Darwinian selection in a major part of D1 protein is testament to this. At the same time, species own two psbA copies hardly have positive selection signals among the D1 protein coding sequences. In this study, eleven co-evolving sites have been detected via different molecules, which may be more important than others.  相似文献   

18.
19.
Translational regulation has been identified as one of the key steps in chloroplast-encoded gene expression. Genetic and biochemical analysis with Chlamydomonas reinhardtii has implicated nucleus-encoded factors that interact specifically with the 5' untranslated region of chloroplast mRNAs to mediate light-activated translation. F35 is a nuclear mutation in C. reinhardtii that specifically affects translation of the psbA mRNA (encoding D1, a core polypeptide of photosystem II), causing a photosynthetic deficiency in the mutant strain. The F35 mutant has reduced ribosome association of the psbA mRNA as a result of decreased translation initiation. This reduction in ribosome association correlates with a decrease in the stability of the mRNA. Binding activity of the psbA specific protein complex to the 5' untranslated region of the mRNA is diminished in F35 cells, and two members of this binding complex (RB47 and RB55) are reduced compared with the wild type. These data suggest that alteration of members of the psbA mRNA binding complex in F35 cells results in a reduction in psbA mRNA-protein complex formation, thereby causing a decrease in translation initiation of this mRNA.  相似文献   

20.
Accumulation of monomer and dimer photosystem (PS) II reaction center core complexes has been analyzed by two-dimensional Blue-native/SDS-PAGE in Synechocystis PCC 6803 wild type and in mutant strains lacking genes psbA, psbB, psbC, psbDIC/DII, or the psbEFLJ operon. In vivo pulse-chase radiolabeling experiments revealed that mutant cells assembled PSII precomplexes only. In DeltapsbC and DeltapsbB, assembly of reaction center cores lacking CP43 and reaction center complexes was detected, respectively. In DeltapsbA, protein subunits CP43, CP47, D2, and cytochrome b559 were synthesized, but proteins did not assemble. Similarly, in DeltapsbD/C lacking D2, and CP43, the de novo synthesized proteins D1, CP47, and cytochrome b559 did not form any mutual complexes, indicating that assembly of the reaction center complex is a prerequisite for assembly with core subunits CP47 and CP43. Finally, although CP43 and CP47 accumulated in DeltapsbEFLJ, D2 was neither expressed nor accumulated. We, furthermore, show that the amount of D2 is high in the strain lacking D1, whereas the amount of D1 is low in the strain lacking D2. We conclude that expression of the psbEFLJ operon is a prerequisite for D2 accumulation that is the key regulatory step for D1 accumulation and consecutive assembly of the PSII reaction center complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号