首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Summary Telomerase activity is repressed in normal human somatic cells, but is activated in most cancers, suggesting that telomerase may be an important target for cancer therapy. In this study, we report that U-73122, an amphiphilic alkylating agent that is commonly used as an inhibitor for phospholipase C, is also a potent and selective inhibitor of human telomerase. The inhibition of telomerase by U-73122 was attributed primarily to the pyrrole-2,5-dione group, since its structural analog U-73343 did not inhibit telomerase. In confirmation, we observed that telomerase was inhibited by N-ethylmaleimide, but not N-ethylsuccinimide. The IC50 value of U-73122 for the in vitro inhibition of telomerase activity is 0.2 μM, which is comparable to or slightly more sensitive than that for phospholipase C. The inhibitory action of U-73122 on telomerase appears to be rather selective since the presence of externally added proteins did not protect the inhibition and the IC50 values for the other enzymes tested in this study were at least an order of magnitude higher than that for telomerase. Furthermore, we demonstrate that U-73122 can inhibit telomerase in hematopoietic cancer cells. The potent and selective inhibition of telomerase by U-73122 raises the potential exploitation of this drug and other alkylating agents as telomerase inhibitor.  相似文献   

3.
4.
5.
Human telomerase inhibition by substituted acridine derivatives.   总被引:8,自引:0,他引:8  
A series of 3,6-disubstituted acridine derivatives have been rationally designed as telomerase inhibitors. They have been designed on the basis that inhibition of telomerase occurs by stabilising G-quadruplex structures formed by the folding of telomeric DNA. The most potent inhibitors have IC50 values against telomerase of between 1.3 and 8 microM, comparable to their cytotoxicity in ovarian cancer cell lines.  相似文献   

6.
A new derivative of 1-phenyl-3-methyl-5-pyrazolone, 4,4-dichloro-1-(2,4-dichlorophenyl)-3-methyl-5-pyrazolone, named TELIN, was chemically synthesized and identified as a potent inhibitor of human telomerase in the cell-free telomeric repeat amplification protocol. TELIN inhibited telomerase activity at submicromolar level with IC50 of approximately 0.3 microM. Kinetic studies revealed that TELIN does not bind to DNA but to telomerase protein, and the mode of inhibition by this substance was competitive-noncompetitive mixed-type with respect to the TS primer, whereas it was uncompetitive or noncompetitive-uncompetitive mixed-type with respect to the three deoxyribonucleosides. These results demonstrate that TELIN is a specific potent catalytic blocker of telomerase,and is considered to be a valuable substance for medical treatment of cancer and related diseases.  相似文献   

7.
Telomerase, which is required to maintain telomeres, has attracted considerable attention as a target for anticancer therapy. In this study, we investigated the inhibition of HeLa cell telomerase activity and cell cycle progression by triethylene tetraamine (TETA), using a modified telomeric repeat amplification protocol (TRAP) assay, and flow cytometry. TETA inhibited telomerase activity in HeLa cell extracts, with an IC50 of about 7.8 microM. Coupled with this inhibition, TETA also increased the proportion of cells in the G1 phase of the cell cycle in a dose-dependent manner. These findings demonstrate that TETA is a potent inhibitor of telomerase in micromolar concentrations, and inhibits the proliferation of HeLa cells by arresting them in G1.  相似文献   

8.
9.
A series of novel aryl-2H-pyrazole derivatives bearing 1,4-benzodioxan or 1,3-benzodioxole moiety were designed as potential telomerase inhibitors to enhance the ability of aryl-2H-pyrazole derivatives to inhibit telomerase, a target of anticancer. The telomerase inhibition tests showed that compound 16A displayed the most potent inhibitory activity with IC50 value of 0.9 μM for telomerase. The antiproliferative tests showed that compound 16A exhibited high activity against human gastric cancer cell SGC-7901 and human melanoma cell B16-F10 with IC50 values of 18.07 and 5.34 μM, respectively. Docking simulation showed that compound 16A could bind well with the telomerase active site and act as telomerase inhibitor. 3D-QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent telomerase inhibitory activity.  相似文献   

10.
Telomerase is a ribonucleoprotein complex, which synthesizes telomeric repeats and which has been identified as a promising target for anticancer therapy. Here we have investigated the effect of a new compound aITEL1296 on telomerase activity. aITEL1296 effectively inhibited telomerase activity; its inhibitory activity was a bit higher (IC50 = 0.19 ± 0.02 ng/mL) than that of BIBR1532, one of the most potent telomerase inhibitors known to date. In addition to telomerase inhibition aITEL1296 activated apoptotic mechanisms and effectively suppressed proliferation of tumor cell lines (GI50 = 5.0 ± 0.2 ng/mL for most sensitive cell line LnCap) but not normal fibroblast cell line.  相似文献   

11.
12.
We have examined analogs of the previously reported 7-deaza-2'-deoxypurine nucleoside triphosphate series of human telomerase inhibitors. Two new telomerase-inhibiting nucleotides are reported: 6-methoxy-7-deaza-2'-deoxyguanosine 5'-triphosphate (OMDG-TP) and 6-thio-7-deaza-2'-deoxyguanosine 5'-triphosphate (TDG-TP). In particular, TDG-TP is a very potent inhibitor of human telomerase with an IC(50) of 60 nM. TDG-TP can substitute for dGTP as a substrate for telomerase, but only at relatively high concentrations. Under conditions in which TDG-TP is the only available guanosine substrate, telomerase becomes nonprocessive, synthesizing short products that appear to contain only one to three TDG residues. Similarly, the less potent telomerase inhibitor OMDG-TP gives rise to short telomerase products, but less efficiently than TDG-TP. We show here that TDG-TP, and to a lesser extent OMDG-TP, can serve as substrates for both templated (Klenow exo) and nontemplated (terminal transferase) DNA polymerases. For either polymerase, the products arising from TDG-TP are relatively short, and give rise to bands of unusual mobility under PAGE conditions. These anomalous bands revert, under treatment with DTT, to normal mobility bands, indicating that these products may contain thiol-labile disulfide linkages involving the incorporated TDG residues. This observation of potential TDG-crosslinks may have bearing on the mechanism of telomerase inhibition by this nucleotide analog.  相似文献   

13.
The integrity of telomeres in most cancer cells is maintained by the action of the telomerase enzyme complex, which catalyzes the synthesis of telomeric DNA repeats in order to replace those lost during replication. Telomerase is especially up-regulated in metastatic cancer and is thus emerging as a major therapeutic target. One approach to telomerase inhibition involves the sequestration of the single-stranded 3' ends of telomeric DNA into higher-order quadruplex structures. We have recently shown that tetra-substituted naphthalene diimide compounds are potent quadruplex-stabilizing molecules with telomerase inhibitory activity in cells. We show here that one such compound, BMSG-SH-3, which has been optimized by computer modeling, has significant in vivo antitumor activity against a model for pancreatic cancer, a cancer that is especially resistant to current therapies. A large reduction in telomerase activity in treated tumors was observed and the naphthalene diimide compound was found to be selectively localized in the treated tumors. We find that the expression of the therapeutically important chaperone protein HSP90, a regulator of telomerase is also reduced in vivo by BMSG-SH-3 treatment. The compound is a potent stabilizer of two G-quadruplex sequences found in the promoter region of the HSP90 gene, as well as a G-quadruplex from human telomeric DNA. It is proposed that the simultaneous targeting of these quadruplexes may be an effective anti-tumor strategy.  相似文献   

14.
In present study, a series of new 1,3,4-oxadiazole derivatives containing 1,4-benzodioxan moiety (6a-6s) as potential telomerase inhibitors were synthesized. The bioassay tests demonstrated that compounds 6k, 6l, 6m, 6n and 6s exhibited broad-spectrum antitumor activity with IC(50) concentration range from 7.21 μM to 25.87 μM against the four cancer cell lines, HEPG2, HELA, SW1116 and BGC823. Moreover, all the title compounds were assayed for telomerase inhibition using the TRAP-PCR-ELISA assay. The results showed compound 6k possessed the most potent telomerase activity (IC(50)=1.27 ± 0.05 μM). Docking simulation was performed to position compound 6k into the active site of telomerase (3DU6) to determine the probable binding model.  相似文献   

15.
The template region of human telomerase RNA is a crucial area for regulating telomerase activity and would be a good target for ribozymes. In fact, potent telomerase inhibitory activity of the ribozyme targeting the GUC sequence of the 5(') end of this region (36-ribosome) has been well demonstrated. To search for a more potent ribozyme, we designed a divalent ribozyme to cleave both the phosphodiester bonds following the GUC and the 23 nucleotides downstream of GUA. An in vitro cleavage study showed that this divalent ribozyme cleaved telomerase RNA more efficiently than the 36-ribozyme or the 59-ribozyme to target the GUA. When this ribozyme was introduced into the carcinoma cells, its inhibitory effect on telomerase activity was less than that of the 36-ribozyme. The 59-ribozyme showed minimum activity on telomerase. This implies that, although the divalent ribozyme possesses a potent cleavage activity on hTR in vitro, the 36-ribozyme is most potent to suppress telomerase activity.  相似文献   

16.
Telomerase is important in tumor initiation and cellular immortalization. Given the striking correlations between telomerase activity and proliferation capacity in tumor cells, telomerase had been considered as a potentially important molecular target in cancer therapeutics. A series of 2,7-diamidoanthraquinone were designed and synthesized. They were evaluated for their effects on telomerase activity, hTERT expression, cell proliferations, and cytotoxicity. In the series, compounds (6, 10, 13, 16, 18, 19, 20-22, and 24) showed potent telomerase inhibitory activity, while compounds 19, 21, and 22 activated hTERT expression in normal human fibroblasts. The results indicated that 2,7-diamidoanthraquinones represent an important class of compounds for telomerase-related drug developments. Compounds 8, 16, 18, 26, and 32 were also selected by the NCI for Screening Program and demonstrated high anti-proliferative activity against 60 human cancer cell lines. Structure-activity relationships (SAR) study revealed that the test compounds with side chains two carbon spacer between amido and amine are important structural moiety for telomerase inhibition. Although the exact mechanism of how this amine group contributes to its activity is still unclear, however, the amine group in the extended arm of the bis-substituted anthraquinone might contribute to proper binding to the residues within the grove of G-quadruplex structure. Our results indicated that the 2,7-disubstituted amido-anthraquinones are potent telomerase inhibitors that have the potential to be further developed into novel anticancer chemotherapeutic agents.  相似文献   

17.
Telomerase, the ribonucleoprotein enzyme maintaining the telomeres of eukaryotic chromosomes, is active in most human cancers and in germline cells but, with few exceptions, not in normal human somatic tissues. Telomere maintenance is essential to the replicative potential of malignant cells and the inhibition of telomerase can lead to telomere shortening and cessation of unrestrained proliferation. We describe novel chemical compounds which selectively inhibit telomerase in vitro and in vivo. Treatment of cancer cells with these inhibitors leads to progressive telomere shortening, with no acute cytotoxicity, but a proliferation arrest after a characteristic lag period with hallmarks of senescence, including morphological, mitotic and chromosomal aberrations and altered patterns of gene expression. Telomerase inhibition and telomere shortening also result in a marked reduction of the tumorigenic potential of drug-treated tumour cells in a mouse xenograft model. This model was also used to demonstrate in vivo efficacy with no adverse side effects and uncomplicated oral administration of the inhibitor. These findings indicate that potent and selective, non-nucleosidic telomerase inhibitors can be designed as novel cancer treatment modalities.  相似文献   

18.
In order to clarify the effect of the base moiety of nucleotide analogs on telomerase inhibition, triphosphate derivatives of biologically active nucleosides, 3'-azido-3'-deoxythymidine (AZT), 2'-deoxy-2'-fluoroarafuranosylthymine (FaraT), acycloguanosine (ACG) and their guanine or thymine counterparts (AZdG, FaraG and ACT, respectively) were investigated. In all of the present cases, guanine derivatives showed more potent inhibition than their thymine counterparts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号