首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Intracellular heme concentrations are maintained in part by heme degradation, which is catalyzed by heme oxygenase. Heme oxygenase consists of two structurally related isozymes, HO-1 and HO-2. Recent studies have identified HO-2 as a potential oxygen sensor. To gain further insights into the regulatory role of HO-2 in heme homeostasis, we analyzed the expression profiles of HO-2 and the biochemical consequences of HO-2 knockdown with specific short interfering RNA (siRNA) in human cells. Both HO-2 mRNA and protein are expressed in the eight human cancer cell lines examined, and HO-1 expression is detectable in five of the cell lines, including HeLa cervical cancer and HepG2 hepatoma. Down-regulation of HO-2 expression with siRNA against HO-2 (siHO-2) caused induction of HO-1 expression at both mRNA and protein levels in HeLa and HepG2 cells. In contrast, knockdown of HO-1 expression did not noticeably influence HO-2 expression. HO-2 knockdown prolonged the half-life of HO-1 mRNA twofold in HeLa cells. Transient transfection assays in HeLa cells revealed that the 4.5-kb human HO-1 gene promoter was activated with selective knockdown of HO-2 in a sequence-dependent manner. Moreover, HO-2 knockdown caused heme accumulation in HeLa and HepG2 cells only when exposed to exogenous hemin. HO-2 knockdown may mimic a certain physiological change that is important in the maintenance of cellular heme homeostasis. These results suggest that HO-2 may down-regulate the expression of HO-1, thereby directing the co-ordinated expression of HO-1 and HO-2.  相似文献   

2.
3.
Hypoxia-inducible factor (HIF)-1 is important for cellular homeostasis under hypoxia. Expression of haem oxygenase-1 (HO-1), an essential enzyme in haem catabolism, varies under hypoxia, depending on cell types. Here, we studied the role of HIF-1alpha, a component of HIF-1, in the regulation of HO-1 expression using three human cell lines: HeLa cervical cancer, and ARPE-19 and D407 retinal pigment epithelial cells. Under hypoxia (1% O(2)), the expression of HO-1 mRNA was decreased in HeLa cells, increased in D407 cells, and unchanged in ARPE-19 cells, while HIF-1alpha protein was accumulated in these cell lines. Thus, HIF-1alpha is unlikely to function as a key regulator for HO-1 expression under hypoxia. We then used ethyl-3,4-dihydroxybenzoate (EDHB), an inhibitor of prolyl hydroxylases, to accumulate HIF-1alpha protein under normoxia. Treatment with EDHB (250-500 microM) increased HIF-1alpha protein levels in HeLa and D407 cells, but not in ARPE-19 cells, whereas EDHB at lower concentrations (50-100 microM) consistently induced HO-1 mRNA expression (about 20-fold) in these three cell lines. Moreover, EDHB increased the HO-1 gene promoter activity via the enhancer that lacks a HIF-1-binding site. In conclusion, the signals evoked by hypoxia and after EDHB treatment differentially regulate HO-1 mRNA expression through HIF-1alpha-independent mechanisms.  相似文献   

4.
5.
6.
7.
8.
In chondrocytes, a low-amplitude intermittent hydrostatic pressure induces production of extracellular matrix molecules, while high hydrostatic pressure inhibits it. High pressure increases cellular heat shock protein 70 level in a number of cell types on account of increased stabilisation of the heat shock protein 70 mRNA. In our experiments, only bovine primary chondrocytes, but not an immortalized chondrocytic cell line, could resist the induction of the stress response in the presence of continuous 30 MPa hydrostatic pressure. We have recently shown that protein synthesis is required for the stabilization. According to two-dimensional gel electrophoresis the synthesis of heat shock protein 90 was also increased in a chondrocytic cell line and in HeLa cells, and mass spectrometric analysis suggested that the induction was rather due to increase in heat shock protein 90beta than in heat shock protein 90alpha. The stress response was rather intense in HeLa cells, therefore, we investigated the effect of continuous 30 MPa hydrostatic pressure on the expression of the two heat shock protein 90 genes in HeLa cells using Northern and Western blot analyses. Heat shock protein 90beta mRNA level increased within 6 hours of exposure to 30 MPa hydrostatic pressure, while hsp90alpha level remained stable. At protein level there was a clear increase in the heat shock protein 90beta/heat shock protein 90alpha ratio, too. These results show a specific regulation of stress proteins in cells exposed to high hydrostatic pressure.  相似文献   

9.
Induction of heme oxygenase (HO)-1 during inflammation has been demonstrated in many cell types, but the contribution of inflammatory molecules nitric oxide (NO) and prostaglandin E(2) (PGE(2)) has remained unresolved. Here we show that NO donors including sodium nitroprusside (SNP) and spermine nonoate (SP-NO), and PGE(2) significantly stimulate HO-1 expression in RAW264.7 macrophages, associated with alternative induction on NO and PGE(2) in medium, respectively. NO donors also show the inductive effect on cyclo-oxygenase 2 protein and PGE(2) production. In the presence of lipopolysaccharide and interferon-gamma (LPS/IFN-gamma), HO-1 protein was induced slightly but significantly, and SNP, SP-NO, and PGE(2) enhanced HO-1 protein induced by LPS/IFN-gamma. L-Arginine analogs N-nitro-L-arginine methyl ester (L-NAME) and N-nitro-L-arginine (NLA) significantly block HO-1 protein induced by LPS/IFN-gamma associated with a decrease in NO (not PGE(2)) production. And, NSAIDs aspirin and diclofenase dose dependently inhibited LPS/IFN-gamma-induced HO-1 protein accompanied by suppression of PGE(2) (not NO) production. PD98059 (a specific inhibitor of MEKK), but not SB203580 (a specific inhibitor of p38 kinase), attenuated PGE(2) (not SP-NO) induced HO-1 protein. Under UVC (100 J/m(2)) and UVB (50 J/m(2)) irradiation, PGE(2) or SP-NO treatment prevents cells from UVC or UVB-induced cell death, and HO-1 inhibitor tin protoporphyrin (SnPP) reverses the preventive effects of PGE(2) and SP-NO. The protective activity induced by PGE(2) on UVC or UVB irradiation-induced cell death was blocked by MAPK inhibitor PD98059 (not SB203580). These results demonstrated that inflammatory molecules NO and PGE(2) were potent inducers of HO-1 gene, and protected cells from UV-irradiation-induced cell death through HO-1 induction.  相似文献   

10.
Pentaerithrityl tetranitrate (PETN) is a long-acting donor of nitric oxide (NO) and has recently been characterized as an antianginal agent that, in contrast with other nitric acid esters, does not induce oxidative stress and is therefore free of tolerance. Moreover, animal experiments have revealed that PETN actively reduces oxygen radical formation in vivoand specifically prevents atherogenesis and endothelial dysfunction. Because heme oxygenase-1 (HO-1) has been described as an antiatherogenic and cytoprotective gene in the endothelium, our aim was to investigate the effect of the active PETN metabolite pentaerithrityl trinitrate (PETriN) on HO-1 expression and catalytic activity in endothelial cells. Endothelial cells derived from human umbilical vein were incubated with PETriN (0.01-1 mM) for 8 hr. PETriN increased HO-1 mRNA and protein levels in a concentration-dependent fashion up to 3-fold over basal levels. Elevation of HO-1 protein was accompanied by a marked increase in catalytic activity of the enzyme as reflected by enhanced formation of both carbon monoxide and the endogenous antioxidant, bilirubin. Pretreatment of endothelial cells with PETriN or bilirubin at low micromolar concentrations protected endothelial cells from hydrogen peroxide-mediated toxicity. HO-1 induction and endothelial protection by PETriN were not mimicked by isosorbide dinitrate, another long-acting nitrate. The present study demonstrates that the active PETN metabolite, PETriN, stimulates mRNA and protein expression as well as enzymatic activity of the antioxidant defense protein, HO-1, in endothelial cells. Increased HO-1 expression and ensuing formation of bilirubin and carbon monoxide may contribute to and explain the specific antioxidant and antiatherogenic actions of PETN.  相似文献   

11.
There is evidence that NO can regulate CO production, however less is known about CO regulation of NO synthesis. Our studies were undertaken to define how CO regulates iNOS in cultured hepatocytes. CO (250 ppm) exposure resulted in a significant decrease in iNOS protein, nitrite production, level of active iNOS dimer and cytosolic iNOS activity in cells stimulated with cytokines (IL-1β) or transfected with the human iNOS gene. However, IL-1β-stimulated iNOS mRNA expression was unaffected by CO. These effects of CO on iNOS protein levels were inhibited when CO was scavenged using hemoglobin. HO-1 induction with an adenoviral vector carrying HO-1 showed a decrease in total iNOS protein, nitrite production, and iNOS dimer level from cells stimulated by IL-1β. iNOS protein level was significantly higher in lung endothelial cells isolated from HO-1 knockout mice compared to wild type cultures stimulated with cytokines mixture. CO was found to increase p38 phosphorylation and p38 inhibition using SB203580 increased iNOS protein levels in response to IL-1β. Interestingly, proteasome inhibitors (MG132 and Lactacystin) and an autophagy inhibitor (3-methyladenine) reversed CO influence iNOS levels. Our results imply that CO exposure decreases NO production by suppressing dimer formation and increasing iNOS degradation through a process involving p38 activation.  相似文献   

12.
The organic nitrate pentaerythrityl tetranitrate (PETN) is known to exert long-term antioxidant and antiatherogenic effects by as yet unidentified mechanisms. In cultured endothelial cells derived from human umbilical vein, the active PETN metabolite PETriN (0.01-1 mM) increased heme oxygenase (HO)-1 mRNA and protein levels in a concentration-dependent fashion. HO-1 induction was accompanied by a marked increase in catalytic activity of the enzyme as reflected by enhanced formation of carbon monoxide and bilirubin. Pretreatment with PETriN or bilirubin at low micromolar concentrations protected endothelial cells from hydrogen peroxide-mediated toxicity. HO-1 induction and endothelial protection by PETriN were not mimicked by isosorbide dinitrate, another long-acting nitrate. The present study demonstrates that PETriN stimulates mRNA and protein expression as well as enzymatic activity of the antioxidant defense protein HO-1 in endothelial cells. Increased HO-1 expression and ensuing formation of cytoprotective bilirubin may contribute to and explain the specific antioxidant and antiatherogenic actions of PETN.  相似文献   

13.
Although hypoxia induces heme oxygenase (HO)-1 protein and mRNA expression in many cell types, hypoxia has also been shown to decrease HO-1 mRNA and protein expression. We tested the hypothesis that 24-h preexposure to hypoxia in human placental preparations suppresses HO protein expression and enzymatic function. Immortalized HTR-8/SVneo first-trimester trophoblast cells and explants of normal human chorionic villi (CV) from term placentas were cultured for 24 h in 1%, 5%, or 20% O(2). HO protein levels were determined by Western blot analysis, and microsomal HO activity was measured. HO-2 protein content was decreased by 17% and 5% in human trophoblast cells after 24-h exposure to 1% and 5% O(2), respectively, versus 20% O(2). In contrast, HO-2 protein content in CV explants was unaffected by changes in oxygenation. HO-1 protein content, which was barely detectable in both biological systems, was not affected by changes in oxygenation. Similarly, HO enzymatic activity was unchanged in both preparations after 24-h exposure to 1%, 5%, or 20% O(2). The above data do not support the hypothesis that hypoxia in the human placenta suppresses both HO protein content and HO protein function. The present observations reinforce the necessity to determine both HO protein expression and function.  相似文献   

14.
Aging of IMR-90 human diploid fibroblasts in vitro is accompanied by significant changes of polyamine metabolism, most notably, a 5-fold decrease of serum-induced activity of ornithine decarboxylase, the key enzyme in the biosynthesis of polyamines (Chen, K. Y., Chang, Z. F., and Liu, A. Y.-C. (1986) J. Cell. Physiol. 129, 142-146). In this paper, we employed Northern blot hybridization and affinity radiolabeling techniques to investigate the molecular basis of this age-associated change of ornithine decarboxylase activity. Since the induction of ornithine decarboxylase by serum is a mid-G1 event, we also examined expressions of other cell cycle-dependent genes that are induced before and after the mid-G1 phase to determine if their expressions may also be age-dependent. Our results demonstrated a 3-fold decrease of the amount of active ornithine decarboxylase molecules that can be labeled by alpha-difluoromethyl[3H]ornithine in senescent IMR-90 cells (population doubling level (PDL) = 52) as compared to young cells (PDL = 22). However, the levels and kinetics of induction of ornithine decarboxylase mRNA in both young and senescent IMR-90 cells were found to be identical throughout a 24-h time period after serum stimulation. The time course and the magnitude of the expression of c-myc, an early G1 gene, were quite similar in young and senescent IMR-90 cells and appeared to be PDL-independent. In contrast, the expression of thymidine kinase, a late G1/S gene, was significantly reduced in senescent IMR-90 cells. Levels of thymidine kinase mRNA and thymidine kinase activity in senescent IMR-90 cells were 6- and 8-fold less than those in young cells, respectively. Based on these data, we proposed that impairment of cell cycling in senescent IMR-90 cells may occur at the late G1/S phase and that decreases of ornithine decarboxylase activity and putrescine accumulation during cell senescence may contribute to this impairment.  相似文献   

15.
16.
17.
Enterohemorrhagic Escherichia coli (EHEC) are the causative agent of hemolytic-uremic syndrome. In the first stage of the infection, EHEC interact with human enterocytes to modulate the innate immune response. Inducible NO synthase (iNOS)-derived NO is a critical mediator of the inflammatory response of the infected intestinal mucosa. We therefore aimed to analyze the role of EHEC on iNOS induction in human epithelial cell lines. In this regard, we show that EHEC down-regulate IFN-gamma-induced iNOS mRNA expression and NO production in Hct-8, Caco-2, and T84 cells. This inhibitory effect occurs through the decrease of STAT-1 activation. In parallel, we demonstrate that EHEC stimulate the rapid inducible expression of the gene hmox-1 that encodes for the enzyme heme oxygenase-1 (HO-1). Knock-down of hmox-1 gene expression by small interfering RNA or the blockade of HO-1 activity by zinc protoporphyrin IX abrogated the EHEC-dependent inhibition of STAT-1 activation and iNOS mRNA expression in activated human enterocytes. These results highlight a new strategy elaborated by EHEC to control the host innate immune response.  相似文献   

18.
RAW264.7 cell incubation with adrenocorticotrophin (ACTH) led to a time-dependent (4-24 h) and concentration-related (1-100 ng/ml) induction of heme oxygenase (HO)-1, and this was a specific effect, because the pattern of expression of other cellular proteins (HO-2, heat shock proteins 70 and 90) was not modified by ACTH. Combined RT-PCR and Western blot analyses revealed expression of the melanocortin receptor (MC-R) types 1 and 3, but not 4, in these cells. However, use of more selective agonists (including melanotan (MTII)) indicated a predominant role for MC3-R in the induction of HO-1 expression and activity. Relevantly, ACTH and MTII incubation with primary peritoneal macrophages (Mphi) also induced HO-1 expression. The potential link between MC3-R dependent cAMP formation and HO-1 induction was ascertained by the following: 1) ACTH and MTII produced a concentration-dependent accumulation of cAMP in RAW264.7 cells, and 2) whereas a selective inhibitor of cAMP-dependent protein kinase A abrogated ACTH- and MTII-induced HO-1 expression, a soluble cAMP derivative promoted HO-1 induction both in RAW264.7 cells and primary Mphi. HO-1 induction in peritoneal Mphi was also detected following in vivo administration of MTII, and appeared to be functionally related to the antimigratory effect of this melanocortin, as determined with a specific inhibitor (zinc protoporphyrin IX). In conclusion, this study highlights a biochemical link between MC-R activation and HO-1 induction in the Mphi, and proposes that this may be of functional relevance in determining MC-R-dependent control of the host inflammatory response.  相似文献   

19.
Increased expression of heme oxygenase-1 (HO-1) increases NO resistance in several cell types, although the biochemical mechanism for this protection is unknown. To address this issue, we have measured different molecular markers of nitrosative stress in three stably transfected cell lines derived from the human lung epithelial line A549: two lines that overexpress rat HO-1 (L1 and A4), and a control line with the empty vector (Neo). Compared with the control Neo cells, L1 and A4 cells had, respectively, 5.8- and 3.8-fold greater HO activity accompanied by increased resistance to NO-induced necrosis. Compared with the Neo control, the HO-1-overexpressing cells also showed significantly less lipid peroxide formation and decreased perturbation of transition metal oxidation and coordination states following a cytotoxic NO exposure. These effects were blocked by the HO-1 inhibitors Zn- and Sn-protoporphyrin IX. In contrast, HO-1 overexpression did not significantly affect total reactive oxygen or nitrogen species, the levels of the nucleobase deamination products in DNA (xanthine, inosine, and uracil) following NO exposure, or NO-induced protein nitration. While increased HO-1 activity prevented NO-induced fluctuations in transition metal homeostasis, addition of an iron chelator decreased NO toxicity only slightly. Our results indicate that lipid peroxidation is a significant cause of NO-induced necrosis in human lung epithelial cells, and that the increased NO survival of L1 cells is due at least in part to decreased lipid peroxidation mediated by HO-1-generated biliverdin or bilirubin.  相似文献   

20.
We have previously reported that antioxidant response element (ARE)-regulated genes, such as heme oxygenase 1 (HO-1), sequestosome 1 (SQSTM1), and NAD(P)H quinone oxidoreductase 1 (NQO1), are induced in human umbilical vein endothelial cells (HUVEC) upon exposure to laminar shear stress. In the present study, we have confirmed a critical role for NF-E2-related factor 2 (Nrf2) in the induction of gene expression in HUVEC exposed to laminar shear stress. Although the mRNA levels of Nrf2 were unchanged during exposure to shear stress, the protein levels of Nrf2 were markedly increased. Small interfering RNA (SiRNA) against Nrf2 significantly attenuated the expression of Nrf2-regulated genes such as HO-1, SQSTM1, NQO1, glutamate-cysteine ligase modifier subunit (GCLM), and ferritin heavy chain. Nrf2 was rapidly degraded in cells treated with cycloheximide under static conditions, but shear stress decreased the rate of Nrf2 degradation. Incubation with the thiol antioxidant N-acetylcysteine strongly inhibited both the Nrf2 accumulation and the expression of Nrf2-regulated genes such as HO-1, GCLM, and SQSTM1. Nitric oxide (NO) production was increased with the strength of shear stress but neither the inhibitor of endothelial NO synthase (eNOS) nor the siRNA against eNOS affected the expression of Nrf2-regulated genes. A xanthine oxidase inhibitor oxypurinol and the flavoprotein inhibitor diphenyleneiodonium, which inhibits NAD(P)H oxidase and mitochondrial respiratory chain, markedly suppressed the expression of these genes. Moreover, diphenylpyrenlphosphine, a reducing compound of lipid hydroperoxides, also significantly suppressed Nrf2-regulated gene expression. Taken together, these findings suggest that shear stress stabilizes Nrf2 protein via the lipid peroxidation elicited by xanthine oxidase and flavoprotein mediated generation of superoxide, resulting in gene induction by the Nrf2-ARE signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号