首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.  相似文献   

2.
The hepatitis B virus (HBV) core protein (HBc) functions in multiple steps of the viral life cycle. Heteroaryldihydropyrimidine compounds (HAPs) such as Bay41-4109 are capsid protein allosteric modulators that accelerate HBc degradation and inhibit the virion secretion of HBV, specifically by misleading HBc assembly into aberrant non-capsid polymers. However, the subsequent cellular fates of these HAP-induced aberrant non-capsid polymers are not well understood. Here, we discovered that that the chaperone-binding E3 ubiquitin ligase protein STUB1 is required for the removal of Bay41-4109-induced aberrant non-capsid polymers from HepAD38 cells. Specifically, STUB1 recruits BAG3 to transport Bay41-4109-induced aberrant non-capsid polymers to the perinuclear region of cells, thereby initiating p62-mediated macroautophagy and lysosomal degradation. We also demonstrate that elevating the STUB1 level enhances the inhibitory effect of Bay41-4109 on the production of HBeAg and HBV virions in HepAD38 cells, in HBV-infected HepG2-NTCP cells, and in HBV transgenic mice. STUB1 overexpression also facilitates the inhibition of Bay41-4109 on the cccDNA formation in de novo infection of HBV. Understanding these molecular details paves the way for applying HAPs as a potentially curative regimen (or a component of a combination treatment) for eradicating HBV from hepatocytes of chronic infection patients.  相似文献   

3.
Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-β1 (IFN-β1). In this connection, the IFN-β1-mediated 2′,5′-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-β1-2′,5′-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic approach in treating HBV infection.Hepatitis B virus infection is a global public health problem. An estimated 2 billion (one-third of the world''s population) people are infected with HBV1 worldwide, and more than 400 million are chronic hepatitis B (CHB) carriers (1). Epidemiological studies have shown that HBV infection is one of the major risk factors for chronic hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). Every year, over 1 million people die of HBV-related liver diseases, 30–50% of which are attributed to HCC (2). In China, more than 130 million (10% of the national population) people are suffering from CHB (3), and HCC has been ranked as the second major cause of cancer-related death since 1990 (4). However, the limited efficacy of antiviral therapies, high rates of post-treatment HBV relapse, and the emergence of drug-resistant viral mutants have greatly hindered the effective management of CHB infection. Therefore, it is of prime importance to understand the mechanisms of HBV-host interactions during malignant transformation in CHB infection to identify novel therapeutic anti-HBV targets.Because human HBV is incapable of infecting hepatocytes in vitro efficiently and the availability of reliable in vitro culture systems that favor HBV replication is limited, the pathogenetic studies of HBV and the development of anti-HBV drugs have long been hampered. HepAD38 and HepG2.2.15, both of which are derived from HepG2 cells and integrated with a greater than 1-unit-length HBV genome, have been widely accepted and are well established cell lines for the study of the HBV life cycle and screening potential HBV inhibitors since the late 1990s (5, 6). Recently comparative proteomics analysis of the HBV-expressing HepG2.2.15 cells and the parental HepG2 cells has been performed in two independent laboratories to characterize the altered proteome profile induced by HBV (7, 8). However, the different genetic backgrounds of HepG2.2.15 and HepG2 may lead to an inaccurate evaluation of the impact of HBV replication on host genes. When compared with HepG2.2.15 cells, which produce HBV particles in a continuous manner, HepAD38 cells produce higher levels of HBV DNA in a controllable and inducible way (5). HBV production in HepAD38 is under the strict control of a tetracycline-responsive promoter; therefore, a direct comparison of cellular characteristics with or without HBV replication in HepAD38 is easily achieved. To date, changes in the proteome profile of HepAD38 induced by HBV replication have not been reported. In this study, we performed comparative proteomics to globally analyze the host response to HBV by using an inducible HBV-producing cell line, HepAD38. The combination of two-dimensional gel electrophoresis (2-DE) and MALDI-TOF MS revealed that 23 cellular proteins were differentially expressed when HBV replicated. Among them, GRP78, which was one of the most highly up-regulated proteins, was further selected for functional assessment.  相似文献   

4.
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a central role in chronic HBV infection. However, analysis of the molecular mechanism of cccDNA formation is difficult because of the low efficiency in tissue cultured cells. In this study, we developed a more efficient cccDNA expression cell, Hep38.7-Tet, by subcloning from a tetracycline inducible HBV expression cell, HepAD38. Higher levels of cccDNA were produced in Hep38.7-Tet cells compared to HepAD38 cells. In Hep38.7-Tet cells, the cccDNA was detectable at six days after HBV induction. HBV e antigen (HBeAg) secretion was dependent upon cccDNA production. We screened chemical compounds using Hep38.7-Tet cells and HBeAg secretion as a marker. Most of the hit compounds have already been reported as anti-HBV compounds. These data suggested that Hep38.7-Tet cells will be powerful tools for analysis of the molecular mechanism of cccDNA formation/maintenance and development of novel therapeutic agents to control HBV infection.  相似文献   

5.
Short interfering RNA-directed inhibition of hepatitis B virus replication   总被引:48,自引:0,他引:48  
RNA interference (RNAi) is the process by which double-stranded RNA directs sequence-specific degradation of mRNA. In mammalian cells, RNAi can be triggered by 21-nucleotide duplexes of short interfering RNA (siRNA). We examined effects of siRNA on hepatitis B virus (HBV) replication. Human hepatoma cells were transfected with HBV DNA and siRNA against HBV-pregenome RNA. Transfection experiments demonstrated that the siRNA reduced the amount of HBV-pregenome RNA and resulted in reduction of the levels of replicative intermediates and viral protein. Our results indicate that siRNA-mediated gene silencing inhibits HBV replication through suppression of viral RNA, which may be useful as a potential therapeutic modality.  相似文献   

6.
多种小分子干扰RNA联合抑制乙型肝炎病毒的体外研究   总被引:1,自引:0,他引:1  
小分子干扰RNA(siRNA)能够在哺乳动物细胞中引起包括病毒基因在内的基因沉默。为了研究多种siRNA联合应用在体外抑制乙型肝炎病毒(HBV)复制中的效果,本研究设计了12种针对不同HBV靶点的siRNA,转染可稳定分泌HBV颗粒的HepG22.2.15细胞,并采用了酶联免疫法检测上清液中HBsAg和HBeAg的含量,实时定量PCR法检测细胞中HBV的DNA含量。结果发现这12种分子均能在不同程度上抑制病毒复制。进一步研究表明它们对HBV的抑制作用在一定程度上存在剂量效应和协同作用,单分子siRNA在80nmol/L处对HBsAg和HBeAg的抑制率分别可达到约80%和60%,而多分子siRNA组合在20nmol/L处对HBsAg就能达到90%的抑制率,但对HBeAg表达的抑制率提高不明显。单分子siRNA在80nmol/L处对HBVDNA复制的抑制率可达到90%以上,而多分子siRNA组合在20nmol/L处对DNA含量就能达到约90%的抑制率。本研究的结果为进一步开发新的联合应用多种siRNA治疗HBV的途径打下了基础。  相似文献   

7.
Hepatitis virus replication in the liver is often accompanied by inflammation resulting in the formation of reactive oxygen species (ROS) and nitric oxide (NO) and these may induce cell death. We investigated whether the expression of HBx or HCV core protein in HepG2 cells has an influence on the sensitivity of these cells for oxidative radicals. Our previous study, using the inducible HBV model of HepAD38, revealed that oxidative-stress-related genes are upregulated by virus replication. In the present study, we examined the intracellular pro-oxidant status with dichlorofluorescein (DCF) in HepG2 cell lines transfected with HBx, HbsAg and HCV core. Baseline intracellular oxidative levels were not different in the cell lines expressing viral proteins as compared to control. However, when these cells were exposed to H(2)O(2), the viral protein expressing cells, especially those expressing HBx, showed a reduced level of ROS. This suggests that HBx and HCV core transfected cells can convert H(2)O(2) to less reactive compounds at a higher rate than the control cells. When HBx or HCV core expressing cells were exposed to peroxynitrite (a highly reactive product formed under physiological conditions through interaction of superoxide (O(2)(-)) with NO) these cells were less sensitive to induction of cell death. In addition, these cell lines were less prone to cell death when exposed to H(2)O(2) directly. In conclusion, HBx and HCV core expression in HepG2 cells leads to a survival benefit under oxidative stress which in vivo can be induced during inflammation.  相似文献   

8.
Hepatitis B virus(HBV) infection is a severe health problem in the world.However,there is still not a satisfactory therapeutic strategy for the HBV infection.To search for new anti-HBV agents with higher efficacy and less side-effects,the inhibitory activities of traditional Chinese medicine Rheum palmatum L.ethanol extract(RPE) against HBV replication were investigated in this study.Quantitative real-time polymerase chain reaction(PCR) was employed to analyze the inhibitory activity of RPE against HBV-DNA replication in a stable HBV-producing cell line HepAD38; the expression levels of HBV surface antigen(HBsAg) and e antigen(HBeAg) were also determined by enzyme linked immunosorbent assay(ELISA) after RPE treatment.RPE could dose-dependently inhibit the production of HBV-DNA and HBsAg.The concentration of 50% inhibition(IC50) was calculated at 209.63,252.53 μg/mL,respectively.However,its inhibitory activity against HBeAg expression was slight even at high concentrations.RPE had a weak cytotoxic effect on HepAD38 cells(CC50 = 1 640 μg/mL) and the selectivity index(SI) was calculated at 7.82.Compared with two anthraquinone derivatives emodin and rhein,RPE showed higher ability of anti-HBV and weaker cytotoxicity.So Rheum palmatum L.might possess other functional agents which could effectively inhibit HBV-DNA replication and HBsAg expression.Further purification of the active agents,identification and modification of their structures to improve the efficacy and decrease the cytotoxicity are required.  相似文献   

9.
10.
通过在乙肝病毒核心蛋白钉突部位插入标签蛋白EGFP及小片段多肽,研究各种改造对HBc功能的影响。采用RLIC方法,构建野生型HBc、HBc钉突部位带不同接头的EGFP融合重组体、缩短的EGFP融合重组体,并构建与HBc功能互补的质粒HBV1.1c-,将不同重组体与HBV1.1c-共转染HEK293细胞,通过观察荧光及Southern blotting检测病毒复制中间体,判断相应基因工程改造对重组蛋白中不同结构域功能的影响。RLIC方法可有效地用来进行片段缺失,且缺失片段大小及位置无明显限制。带柔性或刚性接头的重组HBc-EGFP均可产生绿色荧光,但荧光在细胞内分布形态不同,两种重组HBc-EGFP均不能支持正常的HBV复制,各种截短的插入片段以及aa79-80单独缺失体亦不能支持HBV复制。结果表明RLIC方法是一种基因工程改造的有力工具,不同类型接头对重组蛋白的结构和功能有不同影响,aa79-80对维持HBc的主要功能之一——支持HBV复制有重要作用。  相似文献   

11.
Hepatitis B virus (HBV) infection is a major world-wide health problem. The major obstacles for current anti-HBV therapy are the low efficacy and the occurrence of drug resistant HBV mutations. Recent studies have demonstrated that combination therapy can enhance antiviral efficacy and overcome shortcomings of established drugs. In this study, the inhibitory effect mediated by combination of siRNAs targeting different sites of HBV in transgenic mice was analyzed. HBsAg and HBeAg in the sera of the mice were analyzed by enzyme-linked immunoadsorbent assay, HBV DNA by real-time PCR and HBV mRNA by RT-PCR. Our data demonstrated that all the three siRNAs employed showed marked anti-HBV effects. The expression of HBsAg and the replication of HBV DNA could be specifically inhibited in a dose-dependent manner by siRNAs. Furthermore, combination of siRNAs compared with individual use of each siRNA, exerted a stronger inhibition on antigen expression and viral replication, even though the final concentration of siRNA used for therapy was the same. Secreted HBsAg and HBeAg in the serum of mice treated with siRNA combination were reduced by 96.7 and 96.6 %, respectively. Immunohistochemical detection of liver tissue revealed 91 % reduction of HBsAg-positive cells in the combination therapy group. The combination of siRNAs caused a greater inhibition in the levels of viral mRNA and DNA (90 and 87.7 %) relative to the control group. It was noted that the siRNA3 showed stronger inhibition of cccDNA (78.6 %). Our results revealed that combination of siRNAs mediated a stronger inhibition of viral replication and antigen expression in transgenic mice than single siRNAs.  相似文献   

12.
RNA interference might be an efficient antiviral therapy for some obstinate illness. Here, we studied the effects of hepatitis B virus (HBV)-specific 21-nt small interfering RNAs (siRNA) on HBV gene expression and replication in 2.2.15 cells. Seven vectors expressing specific hairpin siRNA driven by the RNA polymerase II-promoter were constructed and transfected into 2.2.15 cells. In the cell strain that can stably express functional siRNA, the HBV surface antigen (HBsAg) and the HBV e antigen (HBeAg) secretion into culture media was inhibited by 86% and 91%, respectively, as shown by an enzyme-linked immunosorbent assay. Immunofluorescence and Western blot indicated similar results. HBV DNA was markedly restrained by 3.28-fold, as assessed by the fluorescent quantitation PCR. Moreover, the HBV mRNA was significantly reduced by 80% based on semiquantitative RT-PCR. In conclusion, the specific siRNA can knock down the HBV gene expression and replication in vitro, and the silence effects have no relationship with interferon response.  相似文献   

13.
为了研究由pRNA携带的siRNA(HBVsi18-42)所介导的RNAi过程能有效地抑制HBV的基因表达和病毒复制,我们利用细胞模型和高压注射小鼠模型评价HBVsi18-42对HBV复制和基因表达的抑制作用。通过Western印迹检测细胞内的HBsAg含量,用ELISA检测细胞培养上清和小鼠血清中的HBsAg水平,采用Southern印迹检测HBV的复制中间体,通过免疫组织化学检测肝组织切片中HBcAg的表达情况。试验结果显示,HBVsi18-42能以剂量依赖的方式在293T细胞中抑制HBsAg的表达以及在HepG2细胞中下调病毒HBsAg和HBeAg的表达和病毒复制中间体的水平。在小鼠模型中,注射后的3d内HBVsi18-42使小鼠血清中HBsAg的水平分别下降了98.98%、77.07%和60.73%,免疫组织化学检测显示,在注射后的第3天小鼠肝组织内HBcAg阳性细胞数减少了79.1%。初步结果显示HBVsi18-42无论是在细胞或是在小鼠模型中都能下调HBV的复制和基因的表达。本研究为我们下一步实现由pRNA介导的靶向RNAi及基因治疗提供了理论和技术支持。  相似文献   

14.
Hepatitis B virus(HBV) infection is a severe health problem in the world. However, there is still not a satisfactory therapeutic strategy for the HBV infection. To search for new anti-HBV agents with higher efficacy and less side-effects, the inhibitory activities of traditional Chinese medicine Rheum palmatum L. ethanol extract(RPE) against HBV replication were investigated in this study. Quantitative real-time polymerase chain reaction(PCR) was employed to analyze the inhibitory activity of RPE against HBV-DNA replication in a stable HBV-producing cell line HepAD38; the expression levels of HBV surface antigen(HBsAg) and e antigen(HBeAg) were also determined by enzyme linked immunosorbent assay(ELISA) after RPE treatment. RPE could dose-dependently inhibit the production of HBV-DNA and HBsAg. The concentration of 50% inhibition(IC50) was calculated at 209.63, 252.53 μg /mL, respectivel y. However, its inhibitory activity against HBeAg expression was slight even at high concentrations. RPE had a weak cytotoxic effect on HepAD38 cells(CC50 = 1 640 μg /mL) and the selectivity index(SI) was calculated at 7.82. Compared with two anthraquinone derivatives emodin and rhein, RPE showed higher ability of anti-HBV and weaker cytotoxicity. So Rheum palmatum L. might possess other functional agents which could effectively inhibit HBV-DNA replication and HBsAg expression. Further purification of the active agents, identification and modification of their structures to improve the efficacy and decrease the cytotoxicity are required.  相似文献   

15.
小分子干扰RNA(siRNA)能够在哺乳动物细胞中引起包括病毒基因在内的基因沉默。为了研究多种siRNA联合应用在体外抑制乙型肝炎病毒(HBV)复制中的效果,本研究设计了12种针对不同HBV靶点的siRNA,转染可稳定分泌HBV颗粒的HepG22.2.15细胞,并采用了酶联免疫法检测上清液中HBsAg和HBeAg的含量,实时定量PCR法检测细胞中HBV的DNA含量。结果发现这12种分子均能在不同程度上抑制病毒复制。进一步研究表明它们对HBV的抑制作用在一定程度上存在剂量效应和协同作用,单分子siRNA在80nmol/L处对HBsAg和HBeAg的抑制率分别可达到约80%和60%,而多分子siRNA组合在20nmol/L处对HBsAg就能达到90%的抑制率,但对HBeAg表达的抑制率提高不明显。单分子siRNA在80nmol/L处对HBVDNA复制的抑制率可达到90%以上,而多分子siRNA组合在20nmol/L处对DNA含量就能达到约90%的抑制率。本研究的结果为进一步开发新的联合应用多种siRNA治疗HBV的途径打下了基础。  相似文献   

16.
目的:探讨体外针对乙型肝炎病毒(HBV)X基因的小干扰RNA(siRNA)对HBV复制和抗原表达的抵制作用。方法:利用siRNA表达框架法设计针对HBVX基因的siRNA,转染HepG2.2.15细胞,RT-PCR半定量检测转染前后X基因的表达;ELISA法测定各组24、48、72hHBsAg和HBeAg的含量;荧光定量PCR检测48h时HBVDNA的变化。结果:制备了HBVX基因的siRNA,转染后24、48和72h,HBVX基因mRNA的量分别减少了57%、78%和40%;siRNA能抑制HBsAg和HbeAg的分泌,抑制高峰在48h,抑制率分别为42%和43%;荧光定量PCR证实HBVDNA的复制亦受到抑制。结论:针对HBVX基因的siRNA在体外具有抑制HBV复制和抗原表达的作用。  相似文献   

17.
Guo Y  Guo H  Zhang L  Xie H  Zhao X  Wang F  Li Z  Wang Y  Ma S  Tao J  Wang W  Zhou Y  Yang W  Cheng J 《Journal of virology》2005,79(22):14392-14403
Hepatitis B virus (HBV) causes acute and chronic hepatitis and hepatocellular carcinoma. Small interfering RNA (siRNA) and lamivudine have been shown to have anti-HBV effects through different mechanisms. However, assessment of the genome-wide effects of siRNA and lamivudine on HBV-producing cell lines has not been reported, which may provide a clue to interrogate the HBV-cell interaction and to evaluate the siRNA's side effect as a potential drug. In the present study, we designed seven siRNAs based on the conserved HBV sequences and tested their effects on the expression of HBV genes following sorting of siRNA-positive cells. Among these seven siRNAs, siRNA-1 and siRNA-7 were found to effectively suppress HBV gene expression. We further addressed the global gene expression changes in stable HBV-producing cells induced by siRNA-1 and siRNA-7 by use of human genome-wide oligonucleotide microarrays. Data from the gene expression profiling indicated that siRNA-1 and siRNA-7 altered the expression of 54 and 499 genes, respectively, in HepG2.2.15 cells, which revealed that different siRNAs had various patterns of gene expression profiles and suggested a complicated influence of siRNAs on host cells. We further observed that 18 of these genes were suppressed by both siRNA-1 and siRNA-7. Interestingly, seven of these genes were originally activated by HBV, which suggested that these seven genes might be involved in the HBV-host cell interaction. Finally, we have compared the effects of siRNA and lamivudine on HBV and host cells, which revealed that siRNA is more effective at inhibiting HBV expression at the mRNA and protein level in vitro, and the gene expression profile of HepG2.2.15 cells treated by lamivudine is totally different from that seen with siRNA.  相似文献   

18.
Human hepatitis B virus (HBV) causes acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma. Here we report that HBV core protein interacts with a cellular SKIP (skeletal muscle and kidney enriched inositol phosphatase) protein, an endoplasmic reticulum-located phosphoinositide 5-phosphatase, both in vivo and in vitro . The minimal sequence required for interaction is the amino acid region from 116 to 149 for the core protein and the SKIP carboxyl homology (SKICH) domain for SKIP. When HBV replicates in HuH-7 cells, overexpressed SKIP localizes to nucleus in addition to ER and suppresses HBV gene expression and replication. SKIP loses its nuclear localization and suppressive effect during replication of a core-negative HBV mutant. HBV gene expression is enhanced significantly when endogenous SKIP expression is knocked down by a SKIP-specific siRNA. SKIP mutation analysis shows that its 5-phosphatase activity is not required for the suppressive effect and that the suppression domain maps to amino acids 199–226. These results demonstrate that SKIP is translocated from endoplasmic reticulum into nucleus through its interaction with core protein and suppresses HBV gene expression via a novel suppression domain.  相似文献   

19.
目的 构建含有靶向乙肝表面抗原(HBsAg)基因的siRNA、乙肝复合多表位抗原基因和hIL-12共质粒表达的新型DNA疫苗,并在HepG2细胞中检测siRNA的效果以及各基因的表达。方法 设计并合成复合多表位HBV抗原基因,将其与增强型绿色荧光蛋白(EGFP)基因融合克隆进真核表达载体pVAX1的多克隆位点中,同时将带CMV启动子的完整hIL-12表达单元克隆进载体的BspH I位点之间,再设计并合成乙肝siRNA表达单元,将其克隆进载体的Mlu I位点之间,得到真核三元共表达重组质粒pVAX1-siHB-HB-EGFP-hIL12。以该重组质粒瞬时转染人肝癌细胞系HepG2,通过EGFP的荧光标记观察多表位抗原的表达,以ELISA测定培养细胞上清中hIL-12的表达,以rtPCR检测siRNA对HBsAg基因的沉默效果。结果 经酶切鉴定和测序证实共表达siRNA、hIL-12的HBV 多表位DNA疫苗构建成功。转染细胞中检测到绿色荧光,证实抗原表达;转染后48 h hIL-12的检出量为1 289 pg/mL细胞上清,72 h检出量为1 712 pg/mL细胞上清;转染后HBsAg表达量明显降低,证实siRNA效果良好。结论 成功构建乙肝复合多表位抗原基因与siRNA、hIL-12共质粒表达的DNA疫苗,并能在真核细胞中有效表达抗原与hIL-12基因,而且siRNA对HBsAg显示出明显的沉默效果。我们的工作为进一步研究该复合型DNA疫苗抗HBV的治疗效果打下基础。  相似文献   

20.
A non-nucleoside class of compounds that inhibits the replication of hepatitis B virus (HBV) in cell culture has been discovered. A series of substituted analogues of phenylpropenamide 6 has been prepared and evaluated in the HepAD38 cellular assay. Structure-activity relationships of this series are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号