首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently published chemical shifts for haem 13C nuclei in bovine ferricytochrome b 55 (Lee KB, Kweon J, Park H (1995) Assignment of hyperfine-shifted heme carbon resonances in ferricytochrome b 5. FEBS Lett. 367:77–80) are analysed in terms of haem molecular orbitals with perturbed D4h symmetry. Since a crystal structure of this protein is available, together with extensive 1H assignments both in the oxidised and reduced forms, the paramagnetic shifts can be separated into dipolar and Fermi contact contributions by using an empirical magnetic susceptibility tensor. The results are compared with the orientation of the tensor and the geometry of the haem ligands. This comparison casts doubt on one of the 13C assignments and demonstrates that the asymmetry of the haem electronic structure is dominated by the influence of both of the His ligands. The 13C chemical shifts of two haem methyl groups in the minor form of the protein, in which the haem is approximately rotated by 180° about its 5CH15CH axis, are also evaluated.  相似文献   

2.
Although it has been indicated that proteins with chromophoric groups are not suitable for photo-chemically induced dynamic nuclear polarization (photo-CIDNP) measurements, we have successfully obtained these spectra for a heme protein, cytochrome b5. The characteristics of the spectra differed in some points from those so far reported. The intensities of the signals in the aromatic region were very weak, while those of the beta-methylene protons of one histidine and one tryptophan were extremely strong in comparison with the aromatic protons. It was demonstrated, on the basis of the photo-CIDNP spectrum, that one of seven histidines, all three tyrosines and a single tryptophan of the rabbit soluble cytochrome b5 are exposed on the surface of the protein. The results of comparison of the photo-CIDNP spectra for the rabbit soluble and intact, and bovine intact, cytochrome b5 led us to the conclusion that the conformation of the hydrophilic, catalytic part of cytochrome b5 is quite similar among these three proteins. In the presence of Chaps micelles, bovine intact cytochrome b5 was in monomeric form and the histidine signals disappeared from its photo-CIDNP spectrum. When bovine intact cytochrome b5 was reconstituted into egg yolk phosphatidylcholine liposomes, although separate signals due to the protein part were observed in the normal 1H-NMR spectrum, no photo-CIDNP signal could be detected. The normal spectrum suggests that the conformation of the protein embedded in liposomes is similar to that of the oligomeric form without lipids or a detergent.  相似文献   

3.
The proton resonances of the heme, the axial ligands, and other hyperfine-shifted resonances in the 1H nuclear magnetic resonance spectrum of horse ferricytochrome c have been investigated by means of one- and two-dimensional nuclear Overhauser and magnetization transfer methods. Conditions for saturation transfer experiments in mixtures of ferro- and ferricytochrome c were optimized for the cross assignment of corresponding resonances in the two oxidation states. New resonance assignments were obtained for the methine protons of both thioether bridges, the beta and gamma meso protons, the propionate six heme substituent, the N pi H of His-18, and the Tyr-67 OH. In addition, several recently reported assignments were confirmed. All of the resolved hyperfine-shifted resonances in the spectrum of ferricytochrome c are now identified. The Fermi contact shifts experienced by the heme and ligand protons are discussed.  相似文献   

4.
NMR study of the alkaline isomerization of ferricytochrome c   总被引:1,自引:0,他引:1  
X L Hong  D W Dixon 《FEBS letters》1989,246(1-2):105-108
The pH-induced isomerization of horse heart cytochrome c has been studied by 1H NMR. We find that the transition occurring in D2O with a pKa measured as 9.5 +/- 0.1 is from the native species to a mixture of two basic forms which have very similar NMR spectra. The heme methyl peaks of these two forms have been assigned by 2D exchange NMR. The forward rate constant (native to alkaline cytochrome c) has a value of 4.0 +/- 0.6 s-1 at 27 degrees C and is independent of pH; the reverse rate constant is pH-dependent. The activation parameters are delta H not equal to = 12.8 +/- 0.8 kcal.mol1, delta S not equal to = -12.9 +/- 2.0 e.u. for the forward reaction and delta H not equal to = 6.0 +/- 0.3 kcal.mol-1, delta S not equal to = -35.1 +/- 1.3 e.u. for the reverse reaction (pH* = 9.28). delta H degree and delta S degree for the isomerization are 6.7 +/- 0.6 kcal.mol-1 and 21.9 +/- 1.0 e.u., respectively.  相似文献   

5.
This paper describes the identification of some of the contact-shifted resonances in the 1H NMR spectrum of low spin ferric cytochrome b5. In these experiments comparison with cytochrome b5 which had been reconstituted with deuteroheme IX played an important role. NMR techniques used include double resonance experiments, line width analyses, and studies of the pH-dependence of the 1H NMR chemical shifts. The electronic heme structure derived from these resonance assignments is characterized by a highly anisotropic spin density distribution. This anisotropy is most strikingly manifested in the resonances of the vinyl and propionic acid substituents of the protoheme IX. The experiments described in this paper further revealed the coexistence in aqueous solutions of two different molecular species of cytochrome b5, which can be simultaneously observed in the regions of the 1H NMR spectrum which contain the largely contact-shifted resonances.  相似文献   

6.
Summary Modern multidimensional double- and triple-resonance NMR methods have been applied to assign the backbone and side-chain 13C resonances for both equilibrium conformers of the paramagnetic form of rat liver microsomal cytochrome b 5. The assignment of backbone 13C resonances was used to confirm previous 1H and 15N resonance assignments [Guiles, R.D. et al. (1993) Biochemistry, 32, 8329–8340]. On the basis of short- and medium-range NOEs and backbone 13C chemical shifts, the solution secondary structure of rat cytochrome b 5 has been determined. The striking similarity of backbone 13C resonances for both equilibrium forms strongly suggests that the secondary structures of the two isomers are virtually identical. It has been found that the 13C chemical shifts of both backbone and side-chain atoms are relatively insensitive to paramagnetic effects. The reliability of such methods in anisotropic paramagnetic systems, where large pseudocontact shifts can be observed, is evaluated through calculations of the magnitude of such shifts.Abbreviations DANTE delays alternating with nutation for tailored excitation - DEAE diethylaminoethyl - DQF-COSY 2D double-quantum-filtered correlation spectroscopy - EDTA ethylenediaminetetraacetic acid - HCCH-TOCSY 3D proton-correlated carbon TOCSY experiment - HMQC 2D heteronuclear multiple-quantum correlation spectroscopy - HNCA 3D triple-resonance experiment correlating amide protons, amide nitrogens and alpha carbons - HNCO 3D triple-resonance experiment correlating amide protons, amide nitrogens and carbonyl carbons - HNCOCA 3D triple-resonance experiment correlating amide protons, amide nitrogens and alpha carbons via carbonyl carbons - HOHAHA 2D homonuclear Hartmann-Hahn spectroscopy - HOHAHA-HMQC 3D HOHAHA relayed HMQC - HSQC 2D heteronuclear single-quantum correlation spectroscopy - IPTG isopropyl thiogalactoside - NOESY 2D nuclear Overhauser enhancement spectroscopy - NOESY-HSQC 3D NOESY relayed HSQC - TOCSY 2D total correlation spectroscopy - TPPI time-proportional phase incrementation - TSP trimethyl silyl propionate  相似文献   

7.
The reduction of horse heart ferricytochrome c by the tryptic fragment of bovine liver cytochrome b5 and its dimethyl ester heme (DME)-substituted derivative has been studied as a function of ionic strength, pH, and temperature under solution conditions where the reaction is bimolecular. The rate constant for ferricytochrome c reduction by native ferrocytochrome b5 is 1.8 (+/- 0.2) x 10(7) M-1 s-1 (25 degrees C) with delta H++ = 7.5 (+/- 0.2) kcal/mol and delta S++ = -0.3 (+/- 0.6) eu (pH 7.0, I = 0.348 M). Under the same solution conditions, the reduction of ferricytochrome c by DME-ferrocytochrome b5 proceeds with a rate constant of 1.7 (+/- 0.1) x 10(7) M-1 s-1 with delta H++ = 7.9 (+/- 0.4) kcal/mol and delta S++ = 1 (+/- 1) eu. The rate constants for both reactions are strongly dependent on ionic strength. A detailed electrostatic analysis of the proteins has been performed. Two relatively simple Brownian dynamics simulation models predict rate constants for the reaction between the two native proteins that demonstrate a dependence on ionic strength similar to that observed experimentally. In one of these models, the proteins are treated as spheres with reactive surface patches that are defined by a 5 degrees cone generated about the dipole vector calculated for each protein and aligned with the presumed electron-transfer site near the partially exposed heme edge. The second model replaces the reactive patch assumption with an exponential distance dependence for the probability of reaction that permits estimation of a value for the distance-dependence factor alpha. Calculations with this latter model in combination with the aligned dipole assumption provide a reasonable approximation to the observed ionic strength dependence for the reaction and are consistent with a value of alpha = 1.2 A-1.  相似文献   

8.
 Singly and doubly labeled δ-aminolevulinic acid derivatives were used to prepare rat liver outer mitochondrial membrane (OM) cytochrome b 5 containing a 13C-labeled heme active site. A variety of NMR experiments, including HMBC and INADEQUATE in conjunction with the more commonly used HMQC, NOESY, and COSY, were conducted to make unambiguous assignments of protonated carbons and the quaternary pyrrole-α and -β carbons in both isomeric forms of the paramagnetic active center of OM cytochrome b 5. Because the long interpulse delays in the HMBC experiment have a detrimental effect on the detectability of fast relaxing paramagnetically affected resonances, INADEQUATE is proposed as the experiment of choice for assigning quaternary carbons in paramagnetic hemes with carefully chosen macrocycle labeling patterns. Furthermore, the applicability of the INADEQUATE experiment to paramagnetic heme active sites should be facilitated greatly by the availability of biosynthetic methods for producing isotopically labeled b-hemes and, more recently, isotopically labeled c-hemes. Received: 21 September 1998 / Accepted: 25 November 1998  相似文献   

9.
The gene coding for the water-soluble domain of the outer mitochondrial membrane cytochrome b5 (OM cytochrome b5) from rat liver has been synthetized and expressed in Escherichia coli. The DNA sequence was obtained by back-translating the known amino acid sequence [Lederer, F., Ghrir, R., Guiard, B., Cortial, S., & Ito, A. (1983) Eur. J. Biochem. 132, 95-102]. The recombinant OM cytochrome b5 was characterized by UV-visible, EPR, and 1H NMR spectroscopy. The UV-visible and EPR spectra of the OM cytochrome b5 are almost identical to the ones obtained from the overexpressed rat microsomal cytochrome b5 [Bodman, S. B. V., Schyler, M. A., Jollie, D. R., & Sligar, S. G. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 9443-9447]. The one-dimensional 1H NMR spectrum of the OM cytochrome b5 indicates that the rhombic perturbation of the ferric center is essentially identical to that in the microsomal beef, rabbit, chicken, and rat cytochromes b5. Two-dimensional 1H NMR spectroscopy (NOESY) and one-dimensional NOE difference spectroscopy were used to assign the contact-shifted resonances that correspond to each of the two isomers that result from the rotation of the heme around its alpha-gamma-meso axis. The assignment of the resonances allowed the determination of the heme orientation ratio in the OM cytochrome b5, which was found to be 1.0 +/- 0.1. It is noteworthy that the two cytochromes b5 that have similar populations of the two heme isomers (large heme disorder) originate from the rat liver.  相似文献   

10.
Sequence-specific resonance assignments for the isolated second or b domain of the bovine seminal fluid protein PDC-109 have been obtained from analysis of two-dimensional 1H NMR experiments recorded at 500 MHz. These assignments include the identification of all aromatic and most aliphatic amino acid resonances. Stereospecific assignment of resonances stemming from the Val2 CH3 gamma,gamma' groups and from seven CH beta,beta' geminal pairs has been accomplished by analysis of 3J alpha beta coupling constants in conjunction with patterns of cross-peak intensities observed in two-dimensional nuclear Overhauser effect (NOESY) spectra. Analysis of NOESY and 3J alpha NH data reveals a small antiparallel beta-sheet involving stretches containing residues 25-28 and 39-42, a cis-proline residue (Pro4), antiparallel strands consisting of residues 1-3, 5-7, and 10-13, and an aromatic cluster composed of Tyr7, Trp26, and Tyr33. The results of distance geometry and restrained molecular dynamics calculations indicate that the global fold of the PDC-109 b domain, a type II module related to those found in fibronectin, is somewhat different from that predicted by modeling the structure on the basis of homology between type II and kringle units. A shallow depression in the molecular surface which presents a solvent-exposed hydrophobic area--a potential ligand-binding site-is identified in the NMR-based models.  相似文献   

11.
The solution 500-MHz 1H NMR spectral parameters for ferricytochrome b562, a soluble 12-kDa electron carrier from Escherichia coli with axial His/Met coordination, are shown to be strongly influenced by protein concentration and ionic strength at low pH and 25 degrees C in a manner consistent with significant aggregation at low ionic strength. At high ionic strength a well-resolved 1H NMR spectrum reveals over 40 hyperfine-shifted resonances which arise from two isomeric species in the ratio 2:1. 2D COSY and NOESY maps at 25 degrees C for the hyperfine-shifted resonances allow the assignment of a number of axial His resonances and all heme peripheral substituent peaks. The resulting asymmetric heme contact shift patterns, together with the halving of the number of lines when reconstituting with 2-fold symmetric hemin, demonstrate the molecular basis of the solution heterogeneity to be heme orientational disorder. The strongly upfield-shifted axial Met-7 resonances, characteristic of low-spin ferricytochromes c with His/Met ligation, appear upfield only at very low temperatures. At elevated temperatures, all resonances, in particular those of the axial Met, move strongly downfield. Detailed analysis of the deviation from Curie behavior for different functional groups demonstrates the presence of a low spin in equilibrium high spin equilibrium with an intact His-Fe-Met coordination. The weaker axial field in ferricytochrome b562, relative to the purely low-spin ferricytochromes c, is attributed to a perturbed iron-Met bond. The contact shifts for a coordinated Met in the high-spin state are estimated. A link between equatorial hemin and axial ligand interactions is indicated by a differential population of the high-spin form for the two hemin orientations.  相似文献   

12.
A comparative study on the solution structures of bovine microsomal cytochrome b5 (Tb5) and the mutant V45H has been achieved by 1D and 2D 1H-NMR spectroscopy to clarify the differences in the solution conformations between these two proteins. The results reveal that the global folding of the V45H mutant in solution is unchanged, but the subtle changes exist in the orientation of the axial ligand His39, and heme vinyl groups. The side chain of His45 in V45H mutant extends to the outer edge of the heme pocket leaving a cavity at the site originally occupied by the inner methyl group of Val45 residue. In addition, the imidazole ring of axial ligand His39 rotates counterclockwise by approximately 3 degrees around the His-Fe-His axis, and the 4-heme vinyl group turns to the space vacated by the removed side chain due to the mutation. Furthermore, the helix III of the heme pocket undergoes outward displacement, while the linkage between helix II and III is shifted leftward. These observations are not only consistent with the pattern of the pseudocontact shifts of the heme protons, but also well account for the lower stability of V45H mutant against heat and urea.  相似文献   

13.
Recently, we found that ferricytochrome c (ferricyt c) undergoes significant structural changes in mixed aqueous-nonaqueous media, resulting in the formation of a mixture of alkaline-like species. The equilibrium composition of this mixture of species is dependent on the dielectric constant of the mixed solvent medium. One-dimensional (1D) and two-dimensional (2D) (1)H nuclear magnetic resonance (NMR) methods have now been used to study these alkaline-like forms in 30% acetonitrile-water solution. A native-like (M80-ligated) III* form, two lysine-ligated forms (IVa* and IVb*), and a hydroxide-ligated form (V*) were observed. Heme proton resonance assignments for these forms were accomplished using 1D (1)H NMR and 2D nuclear Overhauser effect spectroscopy methods at 20 degrees C and 35 degrees C. The chemical exchange between the alkaline forms in 30% acetonitrile solution facilitated heme proton resonance assignments. Based on examination of the heme proton chemical shifts and several highly conserved amino acid residues, the electronic structure, secondary structure, and hydrogen bond network in the vicinity of the heme in the III* form were found to be intact. Similarly, the heme electronic structure of the IVa* form was found to be comparable to that of the IVa form. Differences in the order of the heme methyl resonances in the IVb* form, however, suggest that the heme active site in this form is somewhat different from that observed in aqueous alkaline solution. In addition, resonance assignments for the 8- and 3-methyl heme protons were made for the hydroxide-ligated V* form for the first time. The observation of chemical exchange peaks between all species except IVb* and IVa* or V* was used to propose an exchange pathway between the different forms of ferricyt c in 30% acetonitrile solution. This pathway may be biologically significant because ferricyt c, which resides in the intermembrane space of mitochondria, is exposed to medium of relatively low dielectric constant when it interacts with the mitochondrial membrane.  相似文献   

14.
Cao C  Zhang Q  Wang ZQ  Wang YF  Wang YH  Wu H  Huang ZX 《Biochimie》2003,85(10):1007-1016
1D and 2D (1)H NMR were employed to probe the effects on the heme microenvironment of cytochrome b(5) caused by the mutation from Val45 to Tyr45, His45 and Glu45. Compared with wild type (WT) cytochrome b(5), in all mutants the heme ring are CCW rotated relative to the imidazole planes of axial ligands and the angles beta between two axial ligand imidazole planes are not changed, being in agreement with the temperature dependence of the shifts of the heme protons. The ratios of heme isomers (major to minor) are smaller than that in WT. The 4-vinyl group of the heme in V45Y assumes cis-orientation, being similar to that of WT, while in V45E and V45H, both cis and trans orientation are found. The relationships between the structure and biological function of the mutants are discussed in terms of the geometry of heme and axial ligands, the hydrophobicity of heme pocket and the electrostatic potential of the heme-exposed area.  相似文献   

15.
The microsomal enzyme ascorbate-cytochrome b5 reductase participates in the ascorbate-dependent fatty acid desaturation. Three pieces of evidence are given for this statement: 1) Comparison of the rate of ascorbate-dependent oleate formation with the rate of reduction of cytochrome b5 in microsomes and in the isolated detergent form shows that only the enzymatic reduction of cytochrome b5 is fast enough to support oleate formation; 2) added enriched ascorbate-cytochrome b5 reductase increases the rate of return of stearoyl-CoA oxidised cytochrome b5 back to the reduced state; 3) addition of enriched ascorbate-cytochrome b5 reductase increases the rate of ascorbate-dependent oleate formation in rat liver microsomes.  相似文献   

16.
1H nuclear magnetic resonance spectroscopy was used to assign the hyperfine-shifted resonances and determine the position of a side chain in the heme cavity of wild-type rat apocytochrome b5 reconstituted with a series of synthetic hemins possessing systematically perturbed carboxylate side chains. The hemins included protohemin derivatives with individually removed or pairwise shortened and lengthened carboxylate side chains, as well as (propionate)n(methyl)8-nporphine-iron(III) isomers with n = 1-3 designed to force occupation of nonnative propionate sites. The resonance assignments were effected on the basis of available empirical heme contact shift correlations and steady-state nuclear Overhauser effect measurements in the low-spin oxidized proteins. The failure to detect holoproteins with certain hemins dictates that the stable holoproteins, unlike the case of myoglobin, demand the axial iron-His bonds and cannot accommodate carboxylate side chains at interior positions in the binding pocket. Hence, the heme pocket interior in cytochrome b5 is judged much less polar and less sterically accommodating than that of myoglobin. The propionate occupational preference was greatest as the native 7-propionate site, but also possible at the nonnative crystallographic 5-methyl or 8-methyl positions. Only for a propionate at the crystallographic 8-methyl position was a significant perturbation of the native molecular/electronic structure observed, and this was attributed to an alternative propionate-protein hydrogen bond at the crystallographic 8-methyl position. The structures of the transient protein complexes detected only shortly after reconstitution reveal that the initial encounter complexes during assembly of holoprotein from apoprotein and hemin involve one of the two alternate propionate-protein links at either the 7-propionate or native 8-methyl position. In a monopropionate hemin, this leads to the characterization of a new type of heme orientational disorder involving rotation about a N-Fe-N axis.  相似文献   

17.
Dimeric and monomeric forms of mitochondrial cytochrome oxidase (EC 1.9.3.1) have been examined using 1H NMR spectroscopy. Paramagnetically shifted resonances were detected in spectra of the monomeric protein. Studies of this protein in a number of oxidation and ligation states have assigned these resonances to ferrihaem a. The temperature and pH dependence of this new probe of haem a environment is reported.  相似文献   

18.
Sequence-specific 1H NMR assignments for the 36 residue bovine pancreatic polypeptide (bPP) have been completed. The secondary and tertiary structure of bPP in solution has been determined from experimental NMR data. It is shown that bPP has a very well-defined C-terminal alpha-helix involving residues 15-32. Although regular secondary structure cannot be clearly defined in the N-terminal region, residues 4-8 maintain a rather ordered conformation in solution. This is attributed primarily to the hydrophobic interactions between this region and the C-terminal helix. The two segments of the structure are joined by a turn which is poorly defined. The four end residues both at the N-terminus and the C-terminus are highly disordered in solution. The overall fold of the bPP molecule is very closely similar to that found in the crystal structure of avian pancreatic polypeptide (aPP). The RMS deviation for backbone atoms of residues 4-8 and 15-32 between the bPP mean structure and the aPP crystal structure is 0.65 A, although there is only 39% identity of the residues. Furthermore, the average conformations of some (mostly from the alpha-helix) side chains of bPP in solution are closely similar to those of aPP in the crystal structure. A large number of side chains of bPP, however, show significant conformational averaging in solution.  相似文献   

19.
ADP and ATP form in acidic aqueous solutions strong complexes with Mo(VI) oxocations in different stoichiometries. Complexation occurs predominantly, if not exclusively, through the phosphate groups of the nucleotides.  相似文献   

20.
Incorporation of modified nucleotides into DNA, using the PCR, has allowed us to probe the influence that the exocyclic 5-methyl group of pyrimidines has on DNAse I cleavage and sequence recognition by drugs. The results show that removal of the methyl group from the major groove, made possible by substituting uridine for thymidine, allows DNAse I to cleave more readily at AT-rich regions compared to normal DNA. By contrast, addition of an extra methyl group, contrived by substituting 5-methylcytidine for normal cytidine, allows DNAse I to cleave more readily at GC-rich regions compared to normal DNA. In the cutting pattern of DNA containing both uridine and 5-methyl cytosine, we find the cleavage characteristics of both the single-substituted DNA species combined. Thus, the presence or absence of the exocyclic 5-methyl group in the major groove has a strong influence on the relative intensity of cleavage of phosphodiester bonds by DNAse I. These nucleotide substitutions can also influence the sequence-selective binding of drugs to DNA. Whereas removal of the methyl group (replacement of T with U) generally has little effect on sequence recognition by a variety of drugs, addition of a methyl group (replacement of C with M) generates new binding sites for some intercalators, namely daunomycin, DACA and SN16713.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号