首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis The cichlid fish, Oreochromis mossambicus, was acclimated to 25°C for a 14 day period and then subjected to elevated temperatures of 30, 35, 40 and 45° C. Gill epithelia was progressively damaged from 30–40° C; gills from fish tested at 45°C showed less damage than those tested at 40°C. This is presumably due to the shorter exposure (survival) time at 45°C. Shrinkage of the secondary lamellae and the collapse of pillar cells supports the hypothesis that hypoxia at elevated temperatures is partially a function of changes in gill morphology.  相似文献   

2.
Trace metals such as zinc play an important role in the normal metabolic functioning of all organisms. However, metals can become toxic if background concentrations are exceeded in the environment. This study investigated the sublethal effects of zinc on the haematology of Oreochromis mossambicus at different water temperatures. Fish were exposed to sublethal zinc (Zn) concentrations of 40μg/l (mean Zn concentration measured from the Mhlathuze River) for a period of 96h at different water temperatures representing the seasonal temperatures in the Mhlathuze River (18°C, 24°C, 28°C and 32°C). Exposure to zinc at 28°C and 32°C resulted in the most pronounced haematological changes in O. mossambicus. The erythrocytotic conditions found following exposure to Zn could be attributed to damage to the gill surface. The ensuing hypoxic conditions are alleviated through the release of large amounts of immature RBC into the circulatory system. The leucocytotic conditions support the findings of damage to the gill surface. The increased glucose concentrations were attributed to a general adaptation response whereby metabolites are mobilised to meet increased energy demands during periods of stress. The changes in Na+ and K+ levels in the plasma of O. mossambicus can be attributed to a combination of stimulation of Na-K ATPase activity, reduced membrane permeability in the gill tissue and leakage from cells into the blood, respectively.  相似文献   

3.
Congeners belonging to the genus Ciona have disparate distributions limited by temperature. Ciona intestinalis is more widespread with a cosmopolitan distribution ranging from tropical to sub-arctic zones, while Ciona savignyi is limited to temperate-latitudes of the northern Pacific Ocean. To compare the heat stress response between congeners, we quantified changes in protein expression using proteomics. Animals were exposed to 22 °C, 25 °C, and 28 °C for 6 h, then recovered at a control temperature (13 °C) for 16 h (high heat stress experiment). In a second experiment we exposed animals to lower levels of heat stress at 18 °C, 20 °C, and 23 °C, with a 16 °C control. A quantitative analysis, using 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry (with a 69% and 93% identification rate for Ciona intestinalis and Ciona savignyi, respectively), showed changes in a number of protein functional groups, including molecular chaperones, extracellular matrix proteins, calcium-binding proteins, cytoskeletal proteins and proteins involved in energy metabolism. Our results indicate that C. intestinalis maintains higher constitutive levels of molecular chaperones than C. savignyi, suggesting that it is prepared to respond faster to thermal stress. Systematic discrepancies between estimated versus predicted molecular masses of identified proteins differed between protein families and were more pronounced under high heat conditions, suggesting that thermal sensitivities are lower for cytoskeletal proteins and ATP-synthase than for any other protein group represented on 2D gels.  相似文献   

4.
The cold shock response in the Gram-positive soil bacterium Bacillus subtilis is described. Cells were exposed to sudden decreases in temperature from their optimal growth temperature of 37°C. The B. subtilis cells were cold shocked at 25°C, 20°C, 15°C, and 10°C. A total of 53 polypeptides were induced at the various cold shock temperatures and were revealed by two-dimensional gel electrophoresis. General stress proteins were identified by a comparative analysis with the heat shock response of B. subtilis. Some unique, prominent cold shock proteins such as the 115 kDa, 97 kDa, and 21 kDa polypeptides were microsequenced. Sequence comparison demonstrated that the 115-kDa protein had homology to the TCA cycle enzyme, aconitase.  相似文献   

5.
Different strains of Thiobacillus ferrooxidans were examined for their ability to produce a heat shock and a cold shock response. Strain A1, heat shocked from 20° to 35°C, acquired thermotolerance, as it showed a 1000-fold reduction in cell mortality when exposed to the supermaximum temperature of 42°C, as compared to a non-heat-shocked control. A heat shock from 25° to 35°C yielded similar results, although a higher degree of thermotolerance was achieved for the shorter exposure times. Cultures heat shocked for 5 h showed a five-log reduction in viable counts after 41 h at 42°C, whereas non-heat-shocked cultures showed a similar reduction in viability in 28 h. Conferred thermotolerance was immediate and sustained for the duration of the exposure to 42°C. Heat-shocked cultures were not significantly protected against loss of viability due to freezing (-15°C for 24 h). Strain S2, cold shocked from 25° to 10°C, and strain D6, cold shocked from 25° to 5°C, were not protected against freezing at-15°C. An analysis of proteins extracted from heat-shocked cells of strain A1 showed the presence of at least one newly induced protein and eight hyper-induced proteins. The molecular weights of the heat shock proteins were in the range of 15–80.3 kDa.  相似文献   

6.
Field observations on temperature and pH of a small pond showed that a amphipod population of Hyalella azteca was exposed to variable seasonal pH between 5.10–5.85, and water temperatures between 2–21 °C. Laboratory experiments were designed to simulate seasonal temperatures and field pHs of a small pond habitat. Laboratory bioassay experiments were conducted to determine the survival of Hyalella azteca at pHs 4, 5, 6 and 7, and varying temperatures of 5°, 10°, 15°, 20° and 25 °C.The LT100 at pH 4 and 25 °C was 5.7 ± 0.47 days, compared to 47.3 ± 2.49 days at 5 °C. An Analysis of Variance (ANOVA) showed temperature was a significant (p > 0.0001) source of variation in the acute lethality of pH to H. azteca. A Duncans Multiple Range Test (DMRT) further showed that in laboratory experiments at pH 4, there was a significant difference ( = 0.01) between the LT100s at 5°, 10°, 15° and 20 °C, but not between temperatures 20° and 25 °C.  相似文献   

7.
Summary Suspensions of E. coli were exposed to microwave irradiation at constant temperatures. No cell death was observed at 35°C, whereas, at 45, 47, and 50°C, the death rates of E. coli exposed to microwave irradiation were higher than those obtained in conventional heat sterilization at the same temperatures.  相似文献   

8.
This study reports on the dieback and recovery of red-osier dogwood, Cornus sericea L. plants from near-lethal (NL, sublethal) stress after varying lengths of post-stress environment (PSE). Intact dormant stems were subjected to 47° C for one hour during either October, November or December, and then placed into either constant 0° C or 23° C (dark condition) or kept under natural conditions at Corvallis, OR. Plants exposed to NL-heat stress in October died prior to 9 weeks of 0° C PSE, while none of the plants from other PSE treatments showed signs of injury. For plants exposed to NL-heat stress during November and December, stemdieback occurred at 0° C after 12 and 15 weeks, respectively. None of the plants from the other PSE treatments were injured. Post-stress temperatures of 0° or 5° C following NL-heat in October were lethal while temperatures above 10° C allowed recovery. Post-stress exposure to 0° C injured excised stems within 48 h, whereas irreversible damage to whole plants occurred by two weeks. Dormant plants exposed in October to other stresses, e.g., freezing temperature and hydrogen cyanamide, at NL dosages showed that these stresses also caused plant dieback at 0° C and little or no dieback at 23° C PSE.Abbreviations NL Near-Lethal - PSE Post-Stress Environment  相似文献   

9.
The mud crab Scylla serrata is an important commercial crustacean inhabiting estuarine water along the coast of southeast China. Metabolism in the gill is affected continuously by fluctuating water temperature and, therefore, the ability to cope with temperature change is essential to maintain physiological function. This experiment was conducted to help understand the mechanism of low temperature adaptation in S. serrata gill. In this study, 40 healthy juvenile male S. serrata from the same broodstock were grouped randomly into four groups, which were kept at 5 °C, 10 °C, 15 °C and 27 °C, with the same feeding regime during a 3-week adaptation period. Two-dimensional electrophoresis of the proteome was conducted to separate the specific proteins responsible for low temperature adaptation. Variations in the mitochondria were observed using transmission electron microscopy, and fatty acid composition was determined using gas chromatography. The results showed that different numbers of specific proteins were expressed under different low temperature adaptation, with more expressed at 5 °C and 10 °C than at 15 °C. Mitochondrial morphology also varied under different low temperature adaptation, but there was no linear relationship between microbial density and adaptation temperature. The composition of different fatty acids in the gill varied considerably with adaptation temperature, but elongation of the carbon chain and transition from fatty acids occurred at lower temperatures. Thus, changes in the specific proteins, mitochondria and fatty acid composition of the gill were the positive effects of low temperature on metabolism, leading to improved adaptation ability in S. serrata.  相似文献   

10.
The heat tolerance of wheat (Triticum aestivum L.) and radish (Raphanus sativus L. var. minor) cenoses exposed to elevated and damaging air temperatures (35°C for 20 h, 45°C for 7 h) under photoculture conditions at various levels of photosynthetically active radiation (PAR) was assessed by measuring characteristics of the slow induction curve of chlorophyll fluorescence at 682 and 734 nm and the CO2 exchange rate. Irrespective of the illumination level, the exposure of the cenoses to 35°C did not induce irreversible changes in the plant photosynthetic apparatus. The lowest extent of damage to wheat and radish cenoses exposed to 45°C was observed at 150 W/m2 of PAR, whereas the highest damage of the plants was observed at an illumination level that was close to the compensation point of the cenose photosynthesis (50–70 W/m2 of PAR at air temperature of 24°C). Viability index proved to be the most sensitive characteristic, compared to other characteristics, which were determined by measuring the slow phase of fluorescence induction at 682 and 734 nm. In the cenoses studied, the pattern of changes in the viability index in response to a stress factor was close to the changes in the photosynthetic rate.  相似文献   

11.
Park S. Nobel 《Oecologia》1981,48(2):194-198
Summary Coryphantha vivipara (Nutt.) Britton & Rose var. deserti (Engelm.) W.T. Marshall (Cactaceae) survived snow and tissue temperatures of-12°C in southern Nevada. However, the freezing point depression of the cell sap was only about 0.9°C. When the nocturnal air temperature in the laboratory was reduced from 10°C to-10°C for one night, the optimum temperature for CO2 uptake shifted from 10°C to 6°C and uptake was reduced 70%, but full recovery to the original values occurred in 4 days. Nocturnal temperatures of-15°C killed 2 out of 5 plants and-20°C killed 5 out of 5, as judged by lack of net CO2 uptake at night over a 2-month observation period. when the stems were cooled at 2° C/h, supercooling to about-6°C occurred followed by an exothermic reaction that presumably represented the freezing of extracellular water. When the subzero temperature was lowered further, no other exothermic reaction was observed and the cells became progressively dehydrated. Freezing-induced tissue death was ascribed to this cellular dehydration, which led to about 94% loss of intracellular water at-15°C. when the tissue temperature was lowered, the ability of chlorenchyma cells to plasmolyze and to take up a stain decreased, both being nearly 70% inhibited at-15°C and completely abolished at-20°C. Some cold-bardening occurred, since lowering the air temperature from 30° to-10°C in 10°C increments at weekly intervals caused the subzero temperature for 50% inhibition of staining to decrease from-10°C to-17°C. Extension of the range of C. vivipara to regions with wintertime freezing apparently reflects the tolerance of considerable freeze dehydration by its protoplasts.  相似文献   

12.
A subtidal seaweed collected in antarctic waters, Plocamium cartilagineum (L. Dix.), displayed induction of mRNAs encoding the 70 kDa heat shock protein (HSP70) and the ubiquitin polyprotein (UBI) when incubated at 5°C. Maximal induction of HSP70 mRNA was observed when the alga was incubated at 10°C for 1 h. Incubations at higher temperatures or for longer periods reduced the amount of HSP70 mRNA detected. Incubations at 20°C or greater resulted in cell death. These data indicate that dispite the unusually low temperature of induction, this macrophyte exhibits a heat shock response similar to that of other organisms at temperatures 5 to 10°C above usual growth conditions.  相似文献   

13.
Survival and tolerance at cold temperatures, the differentially expressed cellular proteins, and cholera toxin (CTX) production were evaluated in Vibrio cholerae O1. Rapid loss of culturability and change to distinct coccoid morphology occurred when cultures of V. cholerae O1 were exposed to 5°C directly from 35°C. Also, cultures of V. cholerae first exposed to 15°C for 2 h and then maintained at 5°C failed to exhibit an adaptive response, instead a rapid loss of viable plate count was noticed. Results from Western blot experiments revealed the absence of a major cold shock protein, CS7.4. Also, a decreased level of CTX was noticed in V. cholerae O1 cultures exposed to 5 or 15°C after first being exposed to 15°C for 2 h, followed by transfer to 5°C. Reduced expression of CTX at cold temperatures, compared to the cultures maintained at 35°C, may be a result of decreased cellular metabolic activity. When V. cholerae O1 cultures were exposed to 15°C for 2 h, elevated expressions of 8, 26 and 194 kDa, and decreased expression of 28 and 183 kDa proteins occurred. It is suggested that these differentially expressed cold-responsive proteins are involved in regulating culturability and conversion to a coccoid cell morphology in V. cholerae O1.  相似文献   

14.
Johanna Laybourn 《Oecologia》1979,41(3):329-337
Summary Growth and respiration were measured in a species of Anonchus (Nematoda: Plectidae) at 5°C, 10°C, 15°C, 20°C and 25°C. At 5°C no growth was measurable but the organisms remained active. Maximum production occurred at 15°C, but the highest rate of growth occurred at 20°C. Thus, adult size attained is dependent on the temperature of growth. Respiratory energy losses derived from Cartesian diver microrespirometry, increased with temperature up to 25°C. Regression coefficients (b values) derived from a log log linear regression of weight against oxygen consumption varied between 0.574–1.793, the lowest value being attained at 5°C, the highest at 20°C. Based on Q10, production and respiratory energy losses the optimum temperatures for Anonchus appears to lie between 10°C–15°C.  相似文献   

15.
Summary Groups of Arctic charr,Salvelinus alpinus, which had been acclimated to water with a salinity of 7 g·l–1 and natural temperature and photoperiod, were exposed to water with different salinities and temperatures in June, September and February. At a salinity of 15 g·l–1, plasma osmolality, plasma Na+, Cl, Mg2+ concentrations and the activity of gill Na-K-ATPase were stable, irrespective of temperature and season. In June, the charr were able to regulate blood plasma ionic levels within narrow limits when exposed to a salinity of 34 g·l–1 (sea water) and a temperature of 8°C. The hypo-osmoregulatory capacity was less, but sufficient if the temperature was only 1°C during the seawater exposure. At the start of the experiment, the gill Na-K-ATPase activity was significantly higher in June than corresponding enzyme activities in September and February. Furthermore, an increase in gill Na-K-ATPase activity during the seawater exposure (8°C) was seen in June. Irrespective of ambient temperature and salinity, no fish died during the June experiments. In September and February, exposure to sea water produced marked increases in plasma osmolality and plasma ion concentrations. There were no changes in gill Na-K-ATPase activity. Consequently, the fish became dehydrated and were moribund after a short period of seawater exposure. Highest mortality was recorded when charr were exposed to winter sea conditions (34 g·l–1 and 1°C) in February. The results indicate that an increase in daylength induce a hypo-osmoregulatory capacity in the Arctic charr during summer. In fall and winter, however, reduced daylength are accompanied by poor hypo-osmoregulatory capacity. This leads to high mortality as a result of increased electrolyte levels and dehydration.  相似文献   

16.
Summary The subdominant CAM species, Echinocereus viridiflorus and Mammillaria vivipara, collected from the shortgrass prairie in northeastern Colorado were pretreated and analyzed for gas exchange under cool temperatures (20/15°C) and warm temperatures (35/15°C). Well watered plants of both species under a 35/15°C thermoperiod fixed atmospheric CO2 during the night and early moring. Echinocereus viridiflorus grown and analyzed at 20/15°C fixed CO2 during the night, early morning and late afternoon but total carbon gain over a 24 h period is less than when grown and analyzed under the 35/15°C thermoperiod. Mammillaria vivipara grown and analyzed at 20/15°C assimilates CO2 at low rates during all parts of a 24 h period with the greatest CO2 fixation rates occuring from midday to late afternoon. The total carbon gain under the 20/15°C thermoperiod is less than that for this species under the 35/15°C thermoperiod. Decreasing the night temperature of plants grown under the warm conditions to 10°C or 5°C results in a depression of the night CO2 fixation in both species. E. viridiflorus from the cool growth conditions showed an enhancement of the CO2 uptake during the night, early morning and late afternoon when subjected to the cooler night temperatures (10°C and 5°C). The CO2 uptake of M. vivipara grown at 20/15°C shows an enhancement during the night and early morning while the CO2 fixation during midday and late afternoon is slightly depressed under cool night temperatures (10° and 5°C). Under the 35/15°C thermoperiod both species exhibit depressed rates of CO2 fixation during the night and early morning when water stressed. Plants of both species grown under the 20/15°C thermoperiod exhibit no net CO2 fixation following five weeks of water deprivation. Upon rewatering, E. viridiflorus begins to recover its capacity for CO2 fixation within 24 h under both the warm and cool temperature regimes. However, M. vivipara did not show recovery within 48 h following rewatering under the warm or cool temperature regime. Contrasting the patterns of gas exchange of the subdominant species, E. viridiflorus and M. vivipara, with a dominant CAM species of the shortgrass prairie, Opuntia polyacantha reveals significant differences that may well dictate the role of these species in this ecosystem. E. viridiflorus and M. vivipara have a lower capacity of carbon gain and recovery from water stress than O. polyacantha mainly due to their lack of late afternoon CO2 uptake. This study suggests that carbon gain plays an important role in limiting E. viridiflorus and M. vivipara in the shortgrass prairie ecosystem.  相似文献   

17.
Zheng X  Cheng W  Wang X  Lei C 《Cryobiology》2011,63(3):164-169
Insects can increase their resistance to cold stress by prior exposure to non-lethal cold temperatures. Here, we investigated the supercooling capacity and survival of eggs, 3rd and 5th instar larvae, and pupae of Spodoptera exigua (Lepidoptera: Noctuidae) during CA, and responses to various pre-treatment protocols, including constant temperatures, thermoperiods, and RCH, RHH, RCH + RHH and RHH + RCH combined with thermoperiods. Only acclimated eggs demonstrated a significant decrease in SCP, from −20.7 ± 0.3 to −22.9 ± 0.3 °C, among all experimental groups compared to non-acclimated stages. Survival increased by 17.5% for eggs, 40.0% and 13.3% for 3rd and 5th instar larvae, and by 20.0% for pupae after CA. Compared to controls, survival of eggs under the conditions of thermoperiod (5:15 °C), thermoperiod (5:15 °C) + RHH, and thermoperiod (5:15, 10:20, and 15:25 °C) + RCH significantly increased. In addition, survival of 3rd and 5th instar larvae and pupae increased under the conditions of thermoperiod (5:15 °C) and thermoperiod (5:15 °C) + RCH, possibly due to the induction of heat shock proteins or cryoprotectants. However, the pre-treatments of thermoperiod + RCH + RHH and thermoperiod + RHH + RCH did not significantly enhance survival of any developmental stage. These adaptive responses may allow S. exigua to enhance supercooling capacity and survival in response to seasonal or unexpected diurnal decreases in environmental temperatures.  相似文献   

18.
19.
Barley (Hordeum vulgare L.) leaves and intact spinach (Spinacia oleracea L.) chloroplasts were exposed to short-term heating, and the aftereffects of heat treatment on in vitro andin vivo activities of nitrate reductase and noncyclic electron transport associated with nitrite reduction were studied. Heating of leaves at temperatures above 40°C led to a monotonic decrease in nitrate reductase in vitro activity. On the contrary, the in vivo enzyme activity, assayed in intact leaf tissues after 5-min heat treatment, increased 1.5 times upon elevating the pretreatment temperature from 37 to 40°C and gradually decreased at higher temperatures. Noncyclic electron transport related to CO2 fixation in intact chloroplasts decreased gradually after heat exposures above 39°C, unlike the electron transport to nitrite as a terminal acceptor, which was stimulated by heating of intact chloroplast suspensions in the temperature range from 33 to 40°C. The heating at higher temperatures inhibited nitrite photoreduction. It is concluded that the heating of phototrophic cells at sublethal temperatures stimulates the mobilization of inorganic nitrogen and thereby facilitates the repair of thermally induced injuries of proteinaceous cell structures. The stimulation of nitrate reductase activity in vivo at the temperature range 37–40°C provides an evidence for the increase in the availability of reductants in the cytosolic compartment of the leaf cell.  相似文献   

20.
Summary The first gill arch ofSalmo gairdneri was fixed from normoxic (O2 saturation of the water >90%) and hypoxic (O2 saturation 25–30% for 5 days) fish at 10 °C and 18 °C, and from fish after one-day recovery from hypoxia at 18 °C. The secondary lamellae of the gills were analysed with morphometric methods for structural, haemotological and circulatory changes. During hypoxia a marked vascular distension took place at both temperatures. At both temperatures the vascular distension coincided with a shortening of the diffusion distance (36% at 10 °C and 21% at 18 °C) and a swelling of the erythrocytes (60% at 10 °C and 42% at 18 °C). The effects of these changes on the oxygen uptake of the gills are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号