首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viral integrase catalyzes the integration of the linear viral DNA genome into the chromatin of the infected host cell, an essential step in the life cycle of retroviruses. The reaction produces a characteristic small duplication of host sequences at the site of integration, implying that there is a close juxtaposition of the viral DNA ends during a concerted integration event. We have used an in vitro assay to measure the concerted integration of virus-like plasmid DNA into naked lambda DNA catalyzed by virion purified avian integrase. In contrast to in vivo avian integration, which has strong fidelity for a 6-bp duplication, purified avian integrase in the context of this assay produced a distribution of duplication sizes, with the 6-bp size dominating. The metal cofactor Mg2+ induced increased fidelity for the 6-bp duplication relative to that with Mn2+. The immediate sequence of the host site may also influence duplication size in that we found sites that sustained multiple independent integration events producing the same duplication size. Additionally, for each set of cloned integration sites (5, 6, and 7 bp), a unique but similar symmetrical pattern of G/C and A/T sequence biases was found. Using duplex oligonucleotides as target substrates, we tested the significance of the 6-bp G/C and A/T pattern for site selection. In the context of this assay, which is likely dominated by the integration of only one viral end, the 6-bp pattern was not preferred. Instead, integration was predominantly into the 3' ends of the oligonucleotides. The combined results of the lambda and oligonucleotide assays indicated that although host site selection has properties in common with recognition of the viral DNA termini, the nonrandom sequence preferences seen for host site selection were not identical to the sequence requirements for long terminal repeat recognition.  相似文献   

2.
M Katzman  R A Katz  A M Skalka    J Leis 《Journal of virology》1989,63(12):5319-5327
The purified integration protein (IN) of avian myeloblastosis virus is shown to nick double-stranded oligodeoxynucleotide substrates that mimic the ends of the linear form of viral DNA. In the presence of Mg2+, nicks are created 2 nucleotides from the 3' OH ends of both the U5 plus strand and the U3 minus strand. Similar cleavage is observed in the presence of Mn2+ but only when the extent of the reaction is limited. Neither the complementary strands nor sequences representing the termini of human immunodeficiency virus type 1 DNA were cleaved at analogous positions. Analysis of a series of substrates containing U5 base substitutions has defined the sequence requirements for site-selective nicking; nucleotides near the cleavage site are most critical for activity. The minimum substrate size required to demonstrate significant activity corresponds to the nearly perfect 15-base terminal inverted repeat. This in vitro activity of IN thus produces viral DNA ends that are joined to host DNA in vivo and corresponds to an expected early step in the integrative recombination reaction. These results provide the first enzymatic support using purified retroviral proteins for a linear DNA precursor to the integrated provirus.  相似文献   

3.
Concerted integration of retrovirus DNA termini into the host chromosome in vivo requires specific interactions between the cis-acting attachment (att) sites at the viral termini and the viral integrase (IN) in trans. In this study, reconstruction experiments with purified avian myeloblastosis virus (AMV) IN and retrovirus-like donor substrates containing wild-type and mutant termini were performed to map the internal att DNA sequence requirements for concerted integration, here termed full-site integration. The avian retrovirus mutations were modeled after internal att site mutations studied at the in vivo level with human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV). Systematic overlapping 4-bp deletions starting at nucleotide positions 7, 8, and 9 in the U3 terminus had a decreasing detrimental gradient effect on full-site integration, while more internal 4-bp deletions had little or no effect. This decreasing detrimental gradient effect was measured by the ability of mutant U3 ends to interact with wild-type U3 ends for full-site integration in trans. Modification of the highly conserved C at position 7 on the catalytic strand to either A or T resulted in the same severe decrease in full-site integration as the 4-bp deletion starting at this position. These studies suggest that nucleotide position 7 is crucial for interactions near the active site of IN for integration activity and for communication in trans between ends bound by IN for full-site integration. The ability of AMV IN to interact with internal att sequences to mediate full-site integration in vitro is similar to the internal att site requirements observed with MLV and HIV-1 in vivo and with their preintegration complexes in vitro.  相似文献   

4.
T Hong  E Murphy  J Groarke    K Drlica 《Journal of virology》1993,67(2):1127-1131
The target specificity of DNA strand transfer mediated by human immunodeficiency virus type 1 integrase was examined in vitro with synthetic oligonucleotides. Although insertion occurred at most locations in the target, some sites were preferred over others by at least 15-fold. Changing the nucleotide sequence of the target changed the distribution of preferred sites in complex ways, some of which included changes in target preference distant from the sequence alteration. Alignment of target sequences revealed that adenosine is preferred adjacent to the insertion site. Strand transfer occurred to within 2 nucleotides of the 3' end and to within 3 nucleotides of the 5' end of the target. This suggests that only 2 or 3 nucleotides flanking the target site are required for integration; such restricted contact with target DNA would allow integrase to insert the two ends of viral DNA into two closely spaced sites in host DNA, consistent with the concerted in vivo integration reaction that generates a 5-bp target duplication.  相似文献   

5.
The retroviral integrase (IN) carries out the integration of the viral DNA into the host genome. Both IN and the DNA sequences at the viral long-terminal repeat (LTR) are required for the integration function. In this report, a series of minor groove binding hairpin polyamides targeting sequences within terminal inverted repeats of the Moloney murine leukemia virus (M-MuLV) LTR were synthesized, and their effects on integration were analyzed. Using cell-free in vitro integration assays, polyamides targeting the conserved CA dinucleotide with cognate sites closest to the terminal base pairs were effective at blocking 3' processing but not strand transfer. Polyamides which efficiently inhibited 3' processing and strand transfer targeted the LTR sequences through position 9. Polyamides that inhibited integration were effective at nanomolar concentrations and showed subnanomolar affinity for their cognate LTR sites. These studies highlight the role of minor groove interactions within the LTR termini for retroviral integration.  相似文献   

6.
Integration into the host genome is one of the hallmarks of the retroviral life cycle and is catalyzed by virus-encoded integrases. While integrase has strict sequence requirements for the viral DNA ends, target site sequences have been shown to be very diverse. We carefully examined a large number of integration target site sequences from several retroviruses, including human immunodeficiency virus type 1, simian immunodeficiency virus, murine leukemia virus, and avian sarcoma-leukosis virus, and found that a statistical palindromic consensus, centered on the virus-specific duplicated target site sequence, was a common feature at integration target sites for these retroviruses.  相似文献   

7.
Integrase is an essential retroviral enzyme, catalyzing the stable integration of reverse transcribed DNA into cellular DNA. Several aspects of the integration mechanism, including the length of host DNA sequence duplication flanking the integrated provirus, which can be from 4 to 6 bp, and the nucleotide preferences at the site of integration, are thought to cluster among the different retroviral genera. To date only the spumavirus prototype foamy virus integrase has provided diffractable crystals of integrase-DNA complexes, revealing unprecedented details on the molecular mechanisms of DNA integration. Here, we characterize five previously unstudied integrase proteins, including those derived from the alpharetrovirus lymphoproliferative disease virus (LPDV), betaretroviruses Jaagsiekte sheep retrovirus (JSRV), and mouse mammary tumor virus (MMTV), epsilonretrovirus walleye dermal sarcoma virus (WDSV), and gammaretrovirus reticuloendotheliosis virus strain A (Rev-A) to identify potential novel structural biology candidates. Integrase expressed in bacterial cells was analyzed for solubility, stability during purification, and, once purified, 3′ processing and DNA strand transfer activities in vitro. We show that while we were unable to extract or purify accountable amounts of WDSV, JRSV, or LPDV integrase, purified MMTV and Rev-A integrase each preferentially support the concerted integration of two viral DNA ends into target DNA. The sequencing of concerted Rev-A integration products indicates high fidelity cleavage of target DNA strands separated by 5 bp during integration, which contrasts with the 4 bp duplication generated by a separate gammaretrovirus, the Moloney murine leukemia virus (MLV). By comparing Rev-A in vitro integration sites to those generated by MLV in cells, we concordantly conclude that the spacing of target DNA cleavage is more evolutionarily flexible than are the target DNA base contacts made by integrase during integration. Given their desirable concerted DNA integration profiles, Rev-A and MMTV integrase proteins have been earmarked for structural biology studies.  相似文献   

8.
Retroviral integrase catalyzes integration of double-stranded viral DNA into the host chromosome by a process that has become an attractive target for drug design. In the 3' processing reaction, two nucleotides are specifically cleaved from both 3' ends of viral DNA yielding a 5' phosphorylated dimer (pGT). The resulting recessed 3' hydroxy groups of adenosine provide the attachment sites to the host DNA in the strand transfer reaction. Here, we studied the effect of modified double-stranded oligonucleotides mimicking both the unprocessed (21-mer oligonucleotides) and 3' processed (19-mer oligonucleotides) U5 termini of proviral DNA on activities of HIV-1 integrase in vitro. The inhibitions of 3' processing and strand transfer reactions were studied using 21-mer oligonucleotides containing isopolar, nonisosteric, both conformationally flexible and restricted phosphonate internucleotide linkages between the conservative AG of the sequence CAGT, and using a 21-mer oligonucleotide containing 2'-fluoroarabinofuranosyladenine. All modified 21-mer oligonucleotides competitively inhibited both reactions mediated by HIV-1 integrase with nanomolar IC50 values. Our studies with 19-mer oligonucleotides showed that modifications of the 3' hydroxyl significantly reduced the strand transfer reaction. The inhibition of integrase with 19-mer oligonucleotides terminated by (S)-9-(3-hydroxy-2-phosphonomethoxypropyl)adenine, 9-(2-phosphonomethoxyethyl)adenine, and adenosine showed that proper orientation of the 3' OH group and the presence of the furanose ring of adenosine significantly influence the strand transfer reaction.  相似文献   

9.
Chen H  Engelman A 《Journal of virology》2000,74(17):8188-8193
Two activities of retroviral integrase, 3' processing and DNA strand transfer, are required to integrate viral cDNA into a host cell chromosome. Integrase activity has been analyzed in vitro using purified protein and recombinant DNA substrates that model the U3 and U5 ends of viral cDNA or by using viral preintegration complexes (PICs) that form during virus infection. Numerous studies have investigated changes in integrase or viral DNA for effects on both 3' processing and DNA strand transfer activities using purified protein, but similar analyses have not been carried out using PICs. Here, we analyzed PICs from human immunodeficiency virus type 1 (HIV-1) strain 604del, an integration-defective mutant lacking 26 bp of U5, and revE1, a revertant of 604del containing an additional 19-bp deletion, for levels of 3' processing activity that occurred in infected cells and for levels of in vitro DNA strand transfer activity. Whereas revE1 supported one-third to one-half of the level of wild-type DNA strand transfer activity, the level of 604del DNA strand transfer activity was undetectable. Surprisingly, integrase similarly processed the 3' ends of 604del and revE1 in vivo. We therefore conclude that 604del is blocked in its ability to replicate in cells after the 3' processing step of retroviral integration. Whereas Western blotting showed that wild-type, revE1, and 604del PICs contained similar levels of integrase protein, Mu-mediated PCR footprinting revealed only minimal protein-DNA complex formation at the ends of 604del cDNA. We propose that 604del is replication defective because proteins important for DNA strand transfer activity do not stably associate with this cDNA after in vivo 3' processing by integrase.  相似文献   

10.
Integration of retroviral DNA into the host cell genome requires the interaction of retroviral integrase (IN) protein with the outer ends of both viral long terminal repeats (LTRs) to remove two nucleotides from the 3' ends (3' processing) and to join the 3' ends to newly created 5' ends in target DNA (strand transfer). We have purified the IN protein of human immunodeficiency virus type 1 (HIV-1) after production in Saccharomyces cerevisiae and found it to have many of the properties described for retroviral IN proteins. The protein performs both 3' processing and strand transfer reactions by using HIV-1 or HIV-2 attachment (att) site oligonucleotides. A highly conserved CA dinucleotide adjacent to the 3' processing site of HIV-1 is important for both the 3' processing and strand transfer reactions; however, it is not sufficient for full IN activity, since alteration of nucleotide sequences internal to the HIV-1 U5 CA also impairs IN function, and Moloney murine leukemia virus att site oligonucleotides are poor substrates for HIV-1 IN. When HIV-1 att sequences are positioned internally in an LTR-LTR circle junction substrate, HIV-1 IN fails to cleave the substrate preferentially at positions coinciding with correct 3' processing, implying a requirement for positioning att sites near DNA ends. The 2 bp normally located beyond the 3' CA in linear DNA are not essential for in vitro integration, since mutant oligonucleotides with single-stranded 3' or 5' extensions or with no residues beyond the CA dinucleotide are efficiently used. Selection of target sites is nonrandom when att site oligonucleotides are joined to each other in vitro. We modified an in vitro assay to distinguish oligonucleotides serving as the substrate for 3' processing and as the target for strand transfer. The modified assay demonstrates that nonrandom usage of target sites is dependent on the target oligonucleotide sequence and independent of the oligonucleotide used as the substrate for 3' processing.  相似文献   

11.
The integration of retroviral DNA proceeds through two steps: trimming of the termini to expose new 3' OH ends, and the transfer of those ends to the phosphates of target DNA. We have examined the ability of the Moloney murine leukemia virus integrase protein (IN) to trim the termini of the preintegrative DNA of mutant viruses with alterations in the U3 inverted repeat. The mutant terminus of one replication-defective viral DNA, containing a 7-bp deletion in the U3 inverted repeat, was not trimmed to produce the normal recessed end. Remarkably, the other terminus of this mutant DNA was also not trimmed, even though its sequence is wild type. This finding suggests that the IN protein requires the presence of two good ends before becoming properly activated to trim either one.  相似文献   

12.
Retroviral integration requires cis-acting sequences at the termini of linear double-stranded viral DNA and a product of the retroviral pol gene, the integrase protein (IN). IN is required and sufficient for generation of recessed 3' termini of the viral DNA (the first step in proviral integration) and for integration of the recessed DNA species in vitro. Human immunodeficiency virus type 1 (HIV-1) IN, expressed in Escherichia coli, was purified to near homogeneity. The substrate sequence requirements for specific cleavage and integration of retroviral DNA were studied in a physical assay, using purified IN and short duplex oligonucleotides that correspond to the termini of HIV DNA. A few point mutations around the IN cleavage site substantially reduced cleavage; most other mutations did not have a drastic effect, suggesting that the sequence requirements are limited. The terminal 15 bp of the retroviral DNA were demonstrated to be sufficient for recognition by IN. Efficient specific cutting of the retroviral DNA by IN required that the cleavage site, the phosphodiester bond at the 3' side of a conserved CA-3' dinucleotide, be located two nucleotides away from the end of the viral DNA; however, low-efficiency cutting was observed when the cleavage site was located one, three, four, or five nucleotides away from the terminus of the double-stranded viral DNA. Increased cleavage by IN was detected when the nucleotides 3' of the CA-3' dinucleotide were present as single-stranded DNA. IN was found to have a strong preference for promoting integration into double-stranded rather than single-stranded DNA.  相似文献   

13.
Yang F  Roth MJ 《Journal of virology》2001,75(20):9561-9570
Retroviral integration results in the stable and coordinated insertion of the two termini of the linear viral DNA into the host genome. An in vitro concerted two-end integration reaction catalyzed by the Moloney murine leukemia virus (M-MuLV) integrase (IN) was used to investigate the binding and coordination of the two viral DNA ends. Comparison of the two-end integration and strand transfer assays indicates that zinc is required for efficient concerted integration utilizing plasmid DNA as target. Complementation assays using a pair of nonoverlapping integrase domains, consisting of the HHCC domain and the core/C-terminal region, yielded products containing the correct 4-base target site duplication. The efficiency of the coordinated two-end integration varied depending on the order of addition of the individual protein and DNA components in the complementation assay. Two-end integration was most efficient when the long terminal repeat (LTR) was premixed with either the target DNA or the HHCC domain. The preference for two-end integration through preincubation of the HHCC finger with the viral DNA supports the role of this domain in the recognition and/or positioning of the LTR.  相似文献   

14.
The integrase encoded by human immunodeficiency virus type 1 (HIV-1) is required for integration of viral DNA into the host cell chromosome. In vitro, integrase mediates a concerted cleavage-ligation reaction (strand transfer) that results in covalent attachment of viral DNA to target DNA. With a substrate that mimics the strand transfer product, integrase carries out disintegration, the reverse of the strand transfer reaction, resolving this integration intermediate into its viral and target DNA parts. We used a set of disintegration substrates to study the catalytic mechanism of HIV-1 integrase and the interaction between the protein and the viral and target DNA sequence. One substrate termed dumbbell consists of a single oligonucleotide that can fold to form a structure that mimics the integration intermediate. Kinetic analysis using the dumbbell substrate showed that integrase turned over, establishing that HIV-1 integrase is an enzyme. Analysis of the disintegration activity on the dumbbell substrate and its derivatives showed that both the viral and target DNA parts of the molecule were required for integrase recognition. Integrase recognized target DNA asymmetrically: the target DNA upstream of the viral DNA joining site played a much more important role than the downstream target DNA in protein-DNA interaction. The site of transesterification was determined by both the DNA sequence of the viral DNA end and the structure of the branched substrate. Using a series of disintegration substrates with various base modifications, we found that integrase had relaxed structural specificity for the hydroxyl group used in transesterification and could tolerate distortion of the double-helical structure of these DNA substrates.  相似文献   

15.
The viral protein HIV-1 integrase is required for insertion of the viral genome into human chromosomes and for viral replication. Integration proceeds in two consecutive integrase-mediated reactions: 3'-processing and strand transfer. To investigate the DNA minor groove interactions of integrase relative to known sites of integrase action, we synthesized oligodeoxynucleotides containing single covalent adducts of known absolute configuration derived from trans-opening of benzo-[a]pyrene 7,8-diol 9,10-epoxide by the exocyclic 2-amino group of deoxyguanosine at specific positions in a duplex sequence corresponding to the terminus of the viral U5 DNA. Because the orientations of the hydrocarbon in the minor groove are known from NMR solution structures of duplex oligonucleotides containing these deoxyguanosine adducts, a detailed analysis of the relationship between the position of minor groove ligands and integrase interactions is possible. Adducts placed in the DNA minor groove two or three nucleotides from the 3'-processing site inhibited both 3'-processing and strand transfer. Inosine substitution showed that the guanine 2-amino group is required for efficient 3'-processing at one of these positions and for efficient strand transfer at the other. Mapping of the integration sites on both strands of the DNA substrates indicated that the adducts both inhibit strand transfer specifically at the minor groove bound sites and enhance integration at sites up to six nucleotides away from the adducts. These experiments demonstrate the importance of position-specific minor groove contacts for both the integrase-mediated 3'-processing and strand transfer reactions.  相似文献   

16.
Retroviral integrase (IN) is responsible for two consecutive reactions, which lead to insertion of a viral DNA copy into a host cell chromosome. Initially, the enzyme removes di- or trinucleotides from viral DNA ends to expose 3'-hydroxyls attached to the invariant CA dinucleotides (3'-processing reaction). Second, it inserts the processed 3'-viral DNA ends into host chromosomal DNA (strand transfer). Herein, we report a crystal structure of prototype foamy virus IN bound to viral DNA prior to 3'-processing. Furthermore, taking advantage of its dependence on divalent metal ion cofactors, we were able to freeze trap the viral enzyme in its ground states containing all the components necessary for 3'-processing or strand transfer. Our results shed light on the mechanics of retroviral DNA integration and explain why HIV IN strand transfer inhibitors are ineffective against the 3'-processing step of integration. The ground state structures moreover highlight a striking substrate mimicry utilized by the inhibitors in their binding to the IN active site and suggest ways to improve upon this clinically relevant class of small molecules.  相似文献   

17.
Retrovirus intasomes purified from virus-infected cells contain the linear viral DNA genome and integrase (IN). Intasomes are capable of integrating the DNA termini in a concerted fashion into exogenous target DNA (full site), mimicking integration in vivo. Molecular insights into the organization of avian myeloblastosis virus IN at the viral DNA ends were gained by reconstituting nucleoprotein complexes possessing intasome characteristics. Assembly of IN-4.5-kbp donor complexes capable of efficient full-site integration appears cooperative and is dependent on time, temperature, and protein concentration. DNase I footprint analysis of assembled IN-donor complexes capable of full-site integration shows that wild-type U3 and other donors containing gain-of-function attachment site sequences are specifically protected by IN at low concentrations (<20 nM) with a defined outer boundary mapping ~20 nucleotides from the ends. A donor containing mutations in the attachment site simultaneously eliminated full-site integration and DNase I protection by IN. Coupling of wild-type U5 ends with wild-type U3 ends for full-site integration shows binding by IN at low concentrations probably occurs only at the very terminal nucleotides (<10 bp) on U5. The results suggest that assembly requires a defined number of avian IN subunits at each viral DNA end. Among several possibilities, IN may bind asymmetrically to the U3 and U5 ends for full-site integration in vitro.  相似文献   

18.
19.
Successful integration of viral genome into a host chromosome depends on interaction between viral integrase and its recognition sequences. We have used a reconstituted concerted human immunodeficiency virus, type 1 (HIV-1), integration system to analyze the role of integrase (IN) recognition sequences in formation of the IN-viral DNA complex capable of concerted integration. HIV-1 integrase was presented with substrates that contained all 4 bases at 8 mismatched positions that define the inverted repeat relationship between U3 and U5 long terminal repeats (LTR) termini and at positions 17-19, which are conserved in the termini. Evidence presented indicates that positions 17-20 of the IN recognition sequences are needed for a concerted DNA integration mechanism. All 4 bases were found at each randomized position in sequenced concerted DNA integrants, although in some instances there were preferences for specific bases. These results indicate that integrase tolerates a significant amount of plasticity as to what constitutes an IN recognition sequence. By having several positions randomized, the concerted integrants were examined for statistically significant relationships between selections of bases at different positions. The results of this analysis show not only relationships between different positions within the same LTR end but also between different positions belonging to opposite DNA termini.  相似文献   

20.
We report the efficient concerted integration of a linear virus-like DNA donor into a 2.8 kbp circular DNA target by integrase (IN) purified from avian myeloblastosis virus. The donor was 528 bp, contained recessed 3' OH ends, was 5' end labeled, and had a unique restriction site not found in the target. Analysis of concerted (full-site) and half-site integration events was accomplished by restriction enzyme analysis and agarose gel electrophoresis. The donor also contained the SupF gene that was used for genetic selection of individual full-site recombinants to determine the host duplication size. Two different pathways, involving either one donor or two donor molecules, were used to produce full-site recombinants. About 90% of the full-site recombinants were the result of using two donor molecules per target. These results imply that juxtapositioning an end from each of two donors by IN was more efficient than the juxtapositioning of two ends of a single donor for the full-site reaction. The formation of preintegration complexes containing integrase and donor on ice prior to the addition of target enhanced the full-site reaction. After a 30 min reaction at 37 degrees C, approximately 20-25% of all donor/target recombinants were the result of concerted integration events. The efficient production of full-site recombinants required Mg2+; Mn2+ was only efficient for the production of half-site recombinants. We suggest that these preintegration complexes can be used to investigate the relationships between the 3' OH trimming and strand transfer reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号