首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The mode of penetration and colonization of stalk, shank and leaf sheath tissues of maize by Stenocarpella maydis (=Diplodia maydis) was determined by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) observations. Detached plant tissues, inoculated with a conidial suspension and examined by SEM at various intervals, showed that S. maydis conidia germinated on all plant material types after 5 h incubation at 30 °C. After 72 h incubation, appressoria had formed at the hyphal tips. Similar observations were recorded on plants inoculated in the glasshouse except that germination was delayed by 7 days after inoculation. TEM studies showed that penetration was affected by a penetration hypha which resulted in the inter- and intracellular colonization of the plant tissues. Colonization was accompanied by degradation of cell walls suggesting that host colonization is facilitated by enzyme activity.  相似文献   

4.
Area of lesions produced by Colletotrichum orbiculare on watermelon (Citrullus lanatus) seedlings was not affected by amount of culture medium on which the fungus was grown, and decreased as length of time the fungus was in culture increased. Internal integrity of C. orbiculare spores appeared degraded, and this was coincident with decreases in lesion area.  相似文献   

5.
6.
Abstract

During a survey of foliar spot of wheat in different agro-ecological wheat production zones, conducted in 2005, Collectotrichum graminicola was found to cause anthracnose in wheat with other foliar diseases like leaf blotch. Pathogenicity has been carried out to fulfill Koch's postulates.  相似文献   

7.
D G Panaccione  R M Hanau 《Gene》1990,86(2):163-170
We have cloned and sequenced two beta-tubulin genes, TUB1 and TUB2, from the phytopathogenic fungus, Colletotrichum graminicola. The nucleotide sequences of the coding regions of the two genes are only 72.8% homologous. This divergence is reflected in the deduced amino acid (aa) sequences which differ at 94 aa residues. Comparison with the aa sequences of other fungal beta-tubulins indicates that the C. graminicola TUB2 gene encodes a conserved isotype, whereas the C. graminicola TUB1 product is highly divergent. Both genes contain six identically placed introns and the position of each intron is conserved in other fungal beta-tubulin genes. Also typical of other fungal beta-tubulin genes, there is a pronounced bias in codon usage in the C. graminicola TUB2 gene; there is a lesser codon bias in TUB1 from C. graminicola. Both C. graminicola beta-tubulin genes are transcribed and yield similar sized messages.  相似文献   

8.
Resistance to anthracnose stalk rot (ASR) in maize was investigated for its effects on the development of Colletotrichum graminicola. ASR and fungal presence in pith tissues of resistant and susceptible genotypes, inoculated at time intervals after wounding in the first internodes, were assessed by rating tissue discoloration and by quantifying ergosterol production using high performance liquid chromatography (HPLC) and fungal recovery from tissues, respectively. Slices (30 μm thick) of pith cores (2 mm diam) of first internodes at late‐whorl and kernel blister stages were also inoculated with a suspension of fungal conidia immediately, 2 or 6 h after slicing. Fungal development was observed in tissues by light microscopy. ASR was markedly reduced in resistant genotypes when compared to susceptible genotypes and when inoculation was delayed after stalk wounding. Ergosterol content in tissues was associated with extent of discoloration due to ASR and fungal recovery. Conidial germination, germ tube elongation, appressorium formation and penetration of cortical cells were all markedly delayed in resistant genotypes, in both resistant and susceptible maize at vegetative stages, and by wound healing. C. graminicola macerated more rapidly and to a greater extent pith tissues of susceptible than resistant genotypes. Resistance mediated by maize genotype and ontogeny, and wound healing is expressed at early stages and subsequent events of host–pathogen interaction. Fungal structural development in detached pith tissues and the rapidity and extent of pith maceration in susceptible when compared to resistant genotypes was indicative of genotypic reaction to ASR in maize in the field. Laboratory inoculation and observation of detached pith tissues could be a useful and accurate tool for rapid screening of maize germplasm to identify ASR resistant genotypes that will function well in the field even where pathogen ingress occurs via wounds.  相似文献   

9.
10.
DNA reassociation was used to estimate GC content, size, and complexity of the nuclear genomes of Colletotrichum from maize and sorghum. Melting-temperature analysis indicated that the GC content of the maize pathotype DNA was 51% and that the GC content of the sorghum pathotype was 52%. DNA reassociation kinetics employing S1 nuclease digestion and an appropriately modified second-order equation indicated that the genome sizes of the maize and sorghum pathotypes were 4.8 x 10(7) bp, and 5.0 x 10(7) bp, respectively. Genomic reconstruction experiments based on Southern blot hybridization between a cloned single-copy gene, PYR1 (orotate phosphoribosyl transferase), and maize-pathotype DNA confirmed the size of the nuclear genome. The single-copy component of the genomes of both pathotypes was estimated at about 90%. For both pathotypes, ca. 7% of the genome represented repetitive DNA, and 2 to 3% was foldback DNA.  相似文献   

11.
Eighty-seven isolates of Colletotrichum graminicola, mostly from Agrostis palustris, were collected in grass fields, most of which were in Ontario, Canada. Specific primers were designed to amplify the mating-type (MAT) genes and, among 35 isolates tested, all yielded a band of the expected size for MAT2. For six isolates, the MAT2 PCR products were sequenced and found to be similar to that reported for MAT2 of C. graminicola from maize. Based on 119 polymorphic bands from 10 random amplified polymorphic DNA primers, analyses of genetic distances were found to generally cluster isolates by host and geographic origin. Among 42 isolates from a grass field in Ontario, significant spatial autocorrelation was found to occur within a 20-m distance, implying that this is the effective propagule dispersal distance. Although clonal propagation was observed in the 87 isolates with 67 unique genotypes, the extent of genetic variation in local populations implies some occurrence of sexual or asexual recombination.  相似文献   

12.
禾谷炭疽菌RGS蛋白生物信息学分析   总被引:6,自引:0,他引:6  
韩长志 《微生物学通报》2014,41(8):1582-1594
【目的】明确禾谷炭疽菌中存在的典型RGS,及其信号肽、跨膜区、二级结构特征,明确该菌RGS与其他病菌之间的关系,最终为深入开展RGS定位、功能研究打下坚实的理论基础,也为进一步开展其他炭疽菌的研究提供重要的理论指导。【方法】基于酿酒酵母中已经报道的4个典型RGS序列,利用BLASTp以及关键词对禾谷炭疽菌蛋白质数据库进行比对、搜索,以及通过SMART保守结构域分析。同时,通过对禾谷炭疽菌中典型RGS氨基酸序列进行细胞信号肽、跨膜区结构以及二级结构等生物信息学分析,此外,通过对禾谷炭疽菌中的典型RGS与其他物种中的同源序列进行遗传关系比较分析。【结果】明确禾谷炭疽菌存在6个典型的RGS,上述RGS在蛋白质二级结构中均含有较高比例的α螺旋结构,而在信号肽方面,除CgRGS6含有明显的信号肽序列外,其他RGS则没有;6个RGS中3个定位在细胞核中,其他则定位在质膜、内质网、线粒体上。【结论】禾谷炭疽菌中的RGS与C.higginsianum、C.gloeosporioides Cg-14/Nara gc5、C.orbiculare等炭疽菌属中的病菌具有较高的同源序列,以及较近的亲缘关系。  相似文献   

13.
Root Colonization by Inoculated Plant Growth-Promoting Rhizobacteria   总被引:12,自引:0,他引:12  
Certain rhizobacteria referred to as 'plant growth-promoting rhizobacteria' (PGPR) can contribute to the biological control of plant pathogens and improve plant growth. They enhance root development either directly by producing phytohormones, or indirectly by inhibiting pathogens through the synthesis of different compounds. PGPR are likely to be of great interest in sustainable crop protection and have drawn much attention in recent years. However, the use of these bacteria to protect crops sometimes fails because rhizobacteria are unable to recolonize the rhizosphere of inoculated plants. The colonization of roots by inoculated bacteria is an important step in the interaction between beneficial bacteria and the host plant. However, it is a complex phenomenon influenced by many biotic and abiotic parameters, some of which are now apparent. This paper summarises knowledge on rhizosphere colonization by PGPR.  相似文献   

14.
Colonization of Wheat Root Hairs and Roots by Agrobacteria   总被引:1,自引:0,他引:1  
Formation of extracellular structures in pure culture and in interaction with wheat root surface was studied by scanning and transmission electron microscopy. The effects of various factors (growth temperature as well as pretreatment of agrobacteria with kalanchoe extract, acetosyringone, and centrifugation) on formation of extracellular structures was tested. The data on Agrobacterium tumefaciens (wild-type strain C58 and mutants LBA2525 (virB2::lacZ) and LBA288 (without the Ti plasmid)) adhesion to wheat root surface and root hairs after pretreatment of agrobacteria with inducer of virulence genes (vir) acetosyringone were obtained. Formation of agrobacterial cell aggregates on wheat root hair tips was demonstrated. The proportion of root hairs with agrobacterial aggregates on the root hair tip insignificantly changed after pretreatment with acetosyringone but considerably increased after treatment of A. tumefaciens C58 and LBA2525 with kalanchoe leaf extract. The most active colonization of root hairs and formation of agrobacterial aggregates on hair root tips was observed at 22°C. The capacity of agrobacteria for adhesion on monocotyledon surface could be changed by pretreatment of bacteria with various surface-active substances. Bacterial cells subjected to centrifugation had a decreased capacity for attachment to both wheat root surface and root hairs. The relationship between the capacity for adhesion and pilus production in agrobacteria was considered.  相似文献   

15.
Maize root colonization by two fluorescent Pseudomonas strains M.3.1. and TR335, isolated respectively from maize and tomato roots, were studied in hydroponic conditions. Each bacterium was inoculated separately, and three different colonization areas were studied: nutrient solution, rhizoplane, and endorhizosphere. The two Pseudomonas strains established large rhizosphere populations, and rhizoplane colonization of the entire root system was similar for both strains. However, strain M.3.1. colonized the endorhizosphere more efficiently than strain TR335. Seminal root cuttings from the tip to the seed allowed the assessment of colonization of three different root areas (i.e., root cap and elongation area, root-hair zone, and mature zone). Rhizoplane colonizations of all these three areas by M.3.1. were significantly the same, whereas strain TR335 colonized the rhizoplane of the root cap and elongation area more actively than the root-hair zone and mature zone. Population size of the strain M.3.1. in the internal tissue of these areas was greater than that of strain TR335. Co-inoculations of the two strains indicated a stimulation of the population size of strain M.3.1. regardless of root area studied, whereas population size of strain TR335 remained unchanged. These results demonstrated that external and internal maize root tissues were colonized to a greater extent by a strain isolated from a maize rhizosphere than by one isolated from another rhizosphere. Received: 26 September 1996 / Accepted: 1 November 1996  相似文献   

16.
A previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for the plant pathogenic fungus Colletotrichum graminicola led to high rates of tandem integration of the whole Ti-plasmid, and was therefore considered to be unsuitable for the identification of pathogenicity and virulence genes by insertional mutagenesis in this pathogen. We used a modified ATMT protocol with acetosyringone present only during the co-cultivation of C. graminicola and A. tumefaciens. Analysis of 105 single-spore isolates randomly chosen from a collection of approximately 2000 transformants, indicated that almost 70% of the transformants had single T-DNA integrations. Of 500 independent transformants tested, 10 exhibited attenuated virulence in infection assays on whole plants. Microscopic analyses primarily revealed defects at different pre-penetration stages of infection-related morphogenesis. Three transformants were characterized in detail. The identification of the T-DNA integration sites was performed by amplification of genomic DNA ends after endonuclease digestion and polynucleotide tailing. In one transformant, the T-DNA had integrated into the 5'-flank of a gene with similarity to allantoicase genes of other Ascomycota. In the second and third transformants, the T-DNA had integrated into an open reading frame (ORF) and into the 5'-flank of an ORF. In both cases, the ORFs have unknown function.  相似文献   

17.
Colonization and Infection by Helicobacter pylori in Humans   总被引:2,自引:0,他引:2  
  相似文献   

18.
Hirschmanniella oryzae is the most common plant-parasitic nematode in flooded rice cultivation systems. These migratory animals penetrate the plant roots and feed on the root cells, creating large cavities, extensive root necrosis and rotting. The objective of this study was to investigate the systemic response of the rice plant upon root infection by this nematode. RNA sequencing was applied on the above-ground parts of the rice plants at 3 and 7 days post inoculation. The data revealed significant modifications in the primary metabolism of the plant shoot, with a general suppression of for instance chlorophyll biosynthesis, the brassinosteroid pathway, and amino acid production. In the secondary metabolism, we detected a repression of the isoprenoid and shikimate pathways. These molecular changes can have dramatic consequences for the growth and yield of the rice plants, and could potentially change their susceptibility to above-ground pathogens and pests.  相似文献   

19.
Colletotrichum graminicola, like many plant pathogenic fungi develop appressoria on germling apices, to facilitate penetration of their host. Induction of these structures occurs after contact with the host surface has been established by the germling. Surface contact and subsequent development of appressoria by germlings of C. graminicola was assessed using interference-reflection microscopy (IRM) and microfabricated pillared silicon substrata. Observations with IRM revealed that under low nutrient conditions, 90% of the germlings developed appressoria once they established 4.5 microm of continuous contact with the substratum. Substrata bearing pillars < or =5 microm in width supported < or =10% appressoria; however, as pillar width was increased the percentage of appressoria formed increased in a sigmoid fashion to a maximum of 80%. The percentage of appressoria produced experimentally on these surfaces was compared to data sets generated from a model designed to calculate the probability of appressorium development on similar pillar arrays at various germ tube contact lengths. These results indicate that germ tubes of C. graminicola require more than 4microm of continuous contact with a hydrophobic substratum for induction of appressoria.  相似文献   

20.
We have developed a restriction enzyme-mediated insertional mutagenesis (REMI) system for the maize pathogen Colletotrichum graminicola. In this report, we demonstrate the utility of a REMI-based mutagenesis approach to identify novel pathogenicity genes. Use of REMI increased transformation efficiency by as much as 27-fold over transformations with linearized plasmid alone. Ninety-nine transformants were examined by Southern analysis, and 51% contained simple integrations consisting of one copy of the vector integrated at a single site in the genome. All appeared to have a plasmid integration at a unique site. Sequencing across the integration sites of six transformants demonstrated that in all cases the plasmid integration occurred at the corresponding restriction enzyme-recognition site. We used an in vitro bioassay to identify two pathogenicity mutants among 660 transformants. Genomic DNA flanking the plasmid integration sites was used to identify corresponding cosmids in a wild-type genomic library. The pathogenicity of one of the mutants was restored when it was transformed with the cosmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号