首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The receptor mediated activation of phospholipase A2 by appropriate ligands results in the synthesis and release of eicosanoids, a class of potent bioregulatory molecules. Madin-Darby canine kidney cells (MDCK) are polarized epithelial cells, with structurally and functionally distinct plasma membrane domains separated by tight junctions. Using MDCK cells grown in dual sided chambers, we show in this report, that a) the receptor mediated release of prostaglandins and arachidonate into the extracellular medium is predominantly unidirectional, b) the direction of release is agonist specific, and c) the magnitude of the response due to a given agonist is cell-domain specific. These characteristics, if operative in vivo, would contribute towards the optimal function of trans-cellular metabolism of eicosanoids already demonstrated.  相似文献   

2.
Desensitization of vasopressin V2 receptor-mediated adenylate cyclase was studied in canine kidney cell line, MDCK cells. Overnight treatment of MDCK cells with arginine vasopressin (AVP) resulted in a loss of vasopressin receptors and an inhibition of cAMP accumulation in response to AVP. Both the loss of receptor and reduction in cAMP accumulation were time- and AVP concentration-dependent. Desensitization was selective for AVP because cAMP formation in response to isoproterenol, prostaglandin E1 (PGE1) and forskolin was not affected by AVP pre-treatment. Pre-treatment of MDCK cells with phorbol dibutyrate (PDBu) also caused a dose-dependent inhibition of AVP mediated cAMP accumulation, but not of isoproterenol-, PGE1- and forskolin-induced cAMP accumulation. PDBu pre-treatment did not cause loss of vasopressin receptors. Instead, the affinity for vasopressin was changed by PDBu treatment. Pre-treatment of the cells with pertussis toxin (PT) had no effect on the desensitization and downregulation of vasopressin (V2) receptors, suggesting that the desensitization may not be mediated by pertussis toxin sensitive G-protein. Our data suggest that pre-treatment of MDCK cells with AVP or PDBu caused desensitization of AVP-mediated cAMP accumulation and that downregulation of V2 receptors required agonist occupancy of the receptors, whereas the affinity of the receptors was changed by phorbol ester treatment.  相似文献   

3.
SHP-2, an SH2 domain-containing protein-tyrosine phosphatase, plays an important role in receptor tyrosine kinase-regulated cell proliferation and differentiation. Little is known about the activation mechanisms and the participation of SHP-2 in the activity of G protein-coupled receptors lacking intrinsic tyrosine kinase activity. We show that the activity of SHP-2 (but not SHP-1) is specifically stimulated by the selective alpha2A-adrenergic receptor agonist UK14304 and by lysophosphatidic acid (LPA) in Madin-Darby canine kidney (MDCK) cells. UK14304 and LPA promote the tyrosine phosphorylation of SHP-2 and its association with Grb2. The agonist-induced direct interaction of Grb2 with SHP-2 is mediated by the SH2 domain of Grb2 and the tyrosine phosphorylation of SHP-2. Rapid activation of Src family kinase by UK14304 preceded the SHP-2 activation. Among the Src family members (Src, Fyn, Lck, Yes, and Lyn) present in MDCK cells, Fyn was the only one specifically associated with SHP-2, and the physical interaction between them, which requires the Src family kinase activity, was increased in response to the agonists. Pertussis toxin, PP1 (a selective Src family kinase inhibitor), or overexpression of a catalytically inactive mutant of Fyn blocked the UK14304- or LPA-stimulated activity of SHP-2, SHP-2 tyrosine phosphorylation, and SHP-2 association with Grb2. Therefore, we have demonstrated for the first time that the activation of SHP-2 by these Gi protein-coupled receptors requires Fyn kinase and that there is a specific physical interaction of Fyn kinase with SHP-2 in MDCK cells.  相似文献   

4.
5.
Primary cilium has emerged as mechanosensor to subtle flow variations in epithelial cells, but its role in shear stress detection remains controversial. To probe the function of this non-motile organelle in shear stress detection by cells, we compared calcium signalling responses induced by shear stress in ciliated and unciliated MDCK cells. Cytosolic free Ca2+ ([Ca2+]i) was measured using Fura-PE3 video imaging fluorescence microscopy in response to shear stress due to laminar flow (385 μl s?1). Our results show that both unciliated and ciliated MDCK cells are shear stress sensitive via ATP release and autocrine feedback through purinergic receptors. However, purinergic calcium signals differed in response intensity and receptor subtypes. In unciliated cells, shear stress-induced elevation in [Ca2+]i was predominantly mediated through P2X receptors (P2XR). In contrast, calcium mobilization in ciliated MDCK cells resulted from P2YRs and store-operated Ca2+-permeable channels besides P2XRs. These findings lend support to the hypothesis that ATP release in response to shear stress is independent of the primary cilium and that transduction of mechanical strain into a specific biochemical responses stems on the mobilization of different sets of purinergic receptors.  相似文献   

6.
Heparin-binding (HB)-EGF, a ligand for EGF receptors, is synthesized as a membrane-anchored precursor that is potentially capable of juxtacrine activation of EGF receptors. However, the physiological importance of such juxtacrine signaling remains poorly described, due to frequent inability to distinguish effects mediated by membrane-anchored HB-EGF vs. mature "secreted HB-EGF." In our studies, using stable expression of a noncleavable, membrane-anchored rat HB-EGF isoform (MDCK(rat5aa) cells) in Madin-Darby canine kidney (MDCK) II cells, we observed a significant increase in transepithelial resistance (TER). Similar significant increases in TER were observed on stable expression of an analogous, noncleavable, membrane-anchored human HB-EGF construct (MDCK(human5aa) cells). The presence of noncleavable, membrane-anchored HB-EGF led to alterations in the expression of selected claudin family members, including a marked decrease in claudin-2 in MDCK(rat5aa) cells compared with the control MDCK cells. Reexpression of claudin-2 in MDCK(rat5aa) cells largely prevented the increases in TER. Ion substitution studies indicated decreased paracellular ionic permeability of Na(+) in MDCK(rat5aa) cells, further indicating that the altered claudin-2 expression mediated the increased TER seen in these cells. In a Ca(2+)-switch model, increased phosphorylation of EGF receptor and Akt was observed in MDCK(rat5aa) cells compared with the control MDCK cells, and inhibition of these pathways inhibited TER changes specifically in MDCK(rat5aa) cells. Therefore, we hypothesize that juxtacrine activation of EGFR by membrane-anchored HB-EGF may play an important role in the regulation of tight junction proteins and TER.  相似文献   

7.
alpha 1-Adrenergic receptors mediate two effects on phospholipid metabolism in Madin-Darby canine kidney (MDCK-D1) cells: hydrolysis of phosphoinositides and arachidonic acid release with generation of prostaglandin E2 (PGE2). The similarity in concentration dependence for the agonist (-)-epinephrine in eliciting these two responses implies that they are mediated by a single population of alpha 1-adrenergic receptors. However, we find that the kinetics of the two responses are quite different, PGE2 production occurring more rapidly and transiently than the hydrolysis of phosphoinositides. The antibiotic neomycin selectively decreases alpha 1-receptor-mediated phosphatidylinositol 4,5-bisphosphate hydrolysis without decreasing alpha 1-receptor-mediated arachidonic acid release and PGE2 generation. In addition, receptor-mediated inositol trisphosphate formation is independent of extracellular calcium, whereas release of labeled arachidonic acid is largely calcium-dependent. Moreover, based on studies obtained with labeled arachidonic acid, receptor-mediated generation of arachidonic acid cannot be accounted for by breakdown of phosphatidylinositol monophosphate, phosphatidylinositol bisphosphate, or phosphatidic acid. Further studies indicate that epinephrine produces changes in formation or turnover of several classes of membrane phospholipids in MDCK cells. We conclude that alpha 1-adrenergic receptors in MDCK cells appear to regulate phospholipid metabolism by the parallel activation of phospholipase C and phospholipase A2. This parallel activation of phospholipases contrasts with models described in other systems which imply sequential activation of phospholipase C and diacylglycerol lipase or phospholipase A2.  相似文献   

8.
In primary culture of anterior pituitary cells, dopamine inhibited the angiotensin (AII)-stimulated inositol phosphate production by 28 +/- 2.5% (n = 14), with an EC50 of 660 +/- 228 nM (n = 8). This effect was blocked by (+)-butaclamol, a specific dopamine receptor antagonist. RU 24926, a D2 specific agonist, but not SKF 38393, a specific D1 agonist, inhibited AII-stimulated inositol phosphate production, suggesting that this dopamine effect is mediated through a dopamine receptor of the D2 subtype. Dopamine also partially inhibited (25%) inositol phosphate production stimulated by thyrotropin-releasing hormone (TRH). Our results suggest that the dopamine-mediated inhibition of hormonally stimulated inositol phosphate production is probably not mediated through the known inhibitory effects of dopamine on cAMP and Ca2+ intracellular concentrations. Although unknown, the mechanism by which dopamine inhibited the AII and TRH-stimulated inositol phosphate production implicates a GTP binding protein sensitive to the islet activating protein (IAP) since dopamine effects were blocked by this toxin. The alpha subunit of the GTP binding protein involved could be one of the three ADP-ribosylated proteins found in anterior pituitary cells in primary cultures, the alpha o (39 kDa), the alpha i (41 kDa), and an alpha subunit of 40 kDa. Indeed, we show here that this 40-kDa IAP substrate, already described in a few tissues, is present in anterior pituitary cells. The negative coupling between dopamine receptors and the AII or TRH inositol phosphate production systems, could be implicated in the dopamine inhibition of the AII- and TRH-stimulated prolactin release since such an inhibition is blocked by IAP. Our results suggest that the negative regulation of inositol phosphate production is one of the mechanisms by which dopamine controls hormonally stimulated prolactin release.  相似文献   

9.
Treatment of cultured Kupffer cells with the beta-adrenergic agonist isoproterenol (10 microM) for a short period of time (30 min) attenuated the subsequent platelet-activating factor (PAF)-induced arachidonic acid release and cyclooxygenase-derived eicosanoid (e.g. thromboxane B2 and prostaglandin E2) production. This effect of isoproterenol was highly specific since the alpha-adrenergic agonist phenylephrine and the beta-adrenergic antagonist propranolol had no effect on the stimulatory effect of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC). The inhibitory effect of isoproterenol on the AGEPC-induced arachidonic acid release was demonstrated through the use of a specific beta-adrenergic subtype agonist and antagonist to be mediated by beta 2-adrenergic receptors on Kupffer cells. These inhibitory effects of isoproterenol can be mimicked by dibutyryl cAMP but not by dibutyryl cGMP, suggesting that a cAMP-dependent mechanism is likely involved in the regulatory action of isoproterenol. Ligand binding studies indicated that short term (i.e. 30 min) treatment of the cultured Kupffer cells with either isoproterenol or dibutyryl cAMP had no effect on the specific [3H]PAF binding. However, long term incubation (9-24 h) with dibutyryl cAMP caused down-regulation of the PAF receptors in rat Kupffer cells. Forskolin (0.1 mM), an adenylyl cyclase activator, down-regulated the surface expression of the AGEPC receptors more rapidly, decreasing the specific [3H]AGEPC binding by approximately 40% within 2 h. The receptor regulatory effect of dibutyryl cAMP and forskolin was time- and concentration-dependent. These observations suggest that a cAMP-dependent mechanism coupled with beta 2-adrenergic receptors may have important regulatory effects on the PAF receptor and post-receptor signal transducing mechanisms for PAF in hepatic Kupffer cells.  相似文献   

10.
Effect of aldosterone on the dome formation in the reconstructed MDCK cell epithelia was studied. MDCK cells derived from dog kidney are assumed to be originated from distal tubules or collecting ducts. When cultured to a confluency, these cells formed a epithelial layer with many domes which contained fluid transported from the apical to the basolateral surface through this layer. Aldosterone at a concentration of 10(-8) to 10(-6) M increased the number of domes dose-dependently, probably through a receptor mediated process, since the dome formation induced by this hormone was completely abolished in the presence of spironolactone. This study primarily disclosed that the dome formation in MDCK cells was stimulated by aldosterone, probably through a receptor mediated mechanism.  相似文献   

11.
Glial cell line-derived neurotrophic factor (GDNF) and hepatocyte growth factor (HGF) are multifunctional signaling molecules in embryogenesis. HGF binds to and activates Met receptor tyrosine kinase. The signaling receptor complex for GDNF typically includes both GDNF family receptor alpha1 (GFRalpha1) and Ret receptor tyrosine kinase. GDNF can also signal independently of Ret via GFRalpha1, although the mechanism has remained unclear. We now show that GDNF partially restores ureteric branching morphogenesis in ret-deficient mice with severe renal hypodysplasia. The mechanism of Ret-independent effect of GDNF was therefore studied by the MDCK cell model. In MDCK cells expressing GFRalpha1 but no Ret, GDNF stimulates branching but not chemotactic migration, whereas both branching and chemotaxis are promoted by GDNF in the cells coexpressing Ret and GFRalpha1, mimicking HGF/Met responses in wild-type MDCK cells. Indeed, GDNF induces Met phosphorylation in several ret-deficient/GFRalpha1-positive and GFRalpha1/Ret-coexpressing cell lines. However, GDNF does not immunoprecipite Met, making a direct interaction between GDNF and Met highly improbable. Met activation is mediated by Src family kinases. The GDNF-induced branching of MDCK cells requires Src activation, whereas the HGF-induced branching does not. Our data show a mechanism for the GDNF-induced branching morphogenesis in non-Ret signaling.  相似文献   

12.
The purpose of this paper was to examine the function of N-methyl-D-aspartate (NMDA) glutamate receptor in cortical neurons on amino acid neurotransmitters release as well as the fraction of neurons implicated in the response of this receptor. Local stimulation of these cells at different concentrations of NMDA, agonist of this ionotropic glutamate receptor, produced a dose dependent release of aspartate, glutamate, glycine and GABA. These effects were blocked by DAP5, an antagonist of the NMDA receptor. The amino acid Ca2+ dependent release mediated by the NMDA receptor, is induced by the opening of voltage-dependent Ca2+ channels that this receptor promotes. Ca++ movements were explored in single cells loaded with fura-2. When single cells were stimulated with 100 μM NMDA, the calcium recording performed showed that 82% of the cells responded to this agonist increasing the intracellular calcium concentration, although the amplitude of these increments was variable. The results suggest that NMDA-elicited neurotransmitter release from cortical neurons involves Ca2+-dependent and Ca2+-independent components, as well as neuron depolarisation, and different VDCC subtypes of N, P/Q or L depending of the amino acid neurotransmitter release elicited by this receptor.  相似文献   

13.
Activation of the respiratory burst in the monocytic cell line U937 by cross-linking human 40-kDa FcR for IgG (Fc gamma RII) with the IgG1 mAb, CIKM5, is dependent on the maturation state of the cell. Addition of anti-Fc gamma RII to undifferentiated cells does not activate the respiratory burst but differentiation with human rIFN-gamma (200 U/ml) for 13 to 15 days results in maximal stimulation by this agonist, with half-maximal responses in cells incubated for 10 to 12 days. During maturation the development of responsiveness to cross-linking Fc gamma RII occurs later than the development of responsiveness to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (maximal responses at 7 to 9 days), or the chemotactic peptide FMLP (half-maximal responses at 7 to 9 days). The late development of maximal Fc gamma RII responses is not associated with either increased Fc gamma RII expression, enhanced calcium mobilization induced by anti-Fc gamma RII, changes in protein kinase C activity (PKC) or a switch in PKC isotype expression. Activation of the respiratory burst via Fc gamma RII may not be mediated by activation of PKC as the kinase inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride and N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride inhibited the Fc gamma RII response by less than 20% at concentrations which inhibit the 12-O-tetradecanoylphorbol-13-acetate-induced respiratory burst by more than 80%. IFN-gamma U937 cells did not metabolize incorporated arachidonate into eicosanoids when stimulated with anti-Fc gamma RII, suggesting that eicosanoids do not mediate activation of the respiratory burst, and this was confirmed by the lack of inhibition by the specific 5'-lipoxygenase and glutathione S-transferase inhibitor, piriprost, and the cyclo-oxygenase inhibitor, indomethacin. In addition there was no significant release of radiolabeled arachidonate in response to anti-Fc gamma RII. The response to anti-Fc gamma RII is inhibited by pertussis toxin, suggesting that signal transduction is via a GTP-binding protein. Agents that elevate intracellular cAMP increased the magnitude of the cAMP transients stimulated by anti-Fc gamma RII and also inhibited the respiratory burst. FMLP responses showed a similar pattern of sensitivity to this range of inhibitors, suggesting that both Fc gamma RII and FMLP receptor share common regulatory mechanisms. However, the termination of the respiratory burst activated via Fc gamma RII and FMLP receptor is independently regulated, in that after FMLP-induced activation there is no subsequent inhibition of the Fc gamma RII-mediated response and vice versa.  相似文献   

14.
Gene therapy for cystic fibrosis (CF) has focused on correcting electrolyte transport in airway epithelia. However, success has been limited by the failure of vectors to attach and enter into airway epithelia, and may require redirecting vectors to targets on the apical membrane of airway cells that mediate these functions. The G-protein-coupled P2Y2 receptor (P2Y2-R) is abundantly expressed on the airway lumenal surface and internalizes into coated pits upon agonist activation. We tested whether a small-molecule-agonist (UTP) could direct vectors to P2Y2-R and mediate attachment, internalization, and gene transfer. Fluorescein-UTP studies demonstrated that P2Y2-R agonists internalized with their receptor, and biotinylated UTP (BUTP) mediated P2Y2-R-specific internalization of fluorescently labeled streptavidin (SAF) or SAF conjugated to biotinylated Cy3 adenoviral-vector (BCAV). BUTP conjugated to BCAV mediated P2Y2-R-specific gene transfer in (1) adenoviral-resistant A9 and polarized MDCK cells by means of heterologous P2Y2-R, and (2) well-differentiated human airway epithelial cells by means of endogenous P2Y2-R. Targeting vectors with small-molecule-ligands to apical membrane G-protein-coupled receptors may be a feasible approach for successful CF gene therapy.  相似文献   

15.
We have characterized the role of tyrosine phosphorylation in protooncogene induction mediated by insulin-like growth factors I and II (IGF-I and IGF-II) in the Madin-Darby canine kidney (MDCK) cell line. These cells possess few, if any, insulin receptors, thus allowing determination of the effects of these growth factors in the absence of any secondary signal mediated through the insulin receptor. We found that IGF-I produced a specific stimulation of tyrosine kinase activity of the 97-kDa beta-subunit of the IGF-I receptor, resulting in autophosphorylation of the receptor and an increase in kinase activity toward a synthetic peptide substrate. This was associated with a gradual decrease in the level of phosphorylation of pp120, the major constitutive phosphotyrosine-containing protein of MDCK cells, and an increase in the ratio of serine to tyrosine phosphorylation. This was followed by a rapid, but transient, induction of c-fos gene expression, with no change in the levels of c-myc mRNA. Cycloheximide treatment resulted in a superinduction of both c-fos and c-myc and prevented any further stimulation by IGF-I. IGF-II did not stimulate tyrosine phosphorylation of its own receptor, but was 25% as active as IGF-I in stimulating phosphorylation of the IGF-I receptor. Despite this, IGF-II did not significantly enhance the expression of either nuclear protooncogene. Insulin also produced a delayed stimulation of IGF-I receptor phosphorylation, but was unable to stimulate biological effects in these cells. Under these conditions neither of the IGFs nor insulin produced any significant stimulation of thymidine incorporation into DNA. These data indicate that the IGF-I receptor can be activated upon binding of IGF-I, and to a lesser extent IGF-II, in intact cells to mediate cellular events. The nature of the signal generated by the IGF-I receptor appears to vary depending on the ligand that occupies it.  相似文献   

16.
Many types of peptide hormone and neurotransmitter receptors mediate hydrolysis of phosphoinositides (PI) and arachidonic acid and arachidonic acid metabolite (AA) release, but the relation between these responses is not clearly defined. We have characterized bradykinin (BK)-mediated AA release and PI hydrolysis in clonal Madin-Darby canine kidney cells (MDCK-D1). Both responses occurred over a similar dose range in response to the B1 and B2 receptor agonist, BK, but not in response to the B1 receptor-selective agonist des-Arg-BK. To test whether AA release occurs via a mechanism which is sequential to and dependent upon PI hydrolysis, we used the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), which activates protein kinase C. TPA treatment blocked BK-mediated PI hydrolysis in MDCK-D1 cells, while at the same time and at similar concentrations enhancing BK-mediated AA release. Thus, TPA treatment dissociated BK-mediated AA release from PI hydrolysis. In addition, treatment of MDCK-D1 cells with neomycin blocked BK-mediated hydrolysis of phosphatidylinositol bisphosphate without reducing BK-mediated AA release. BK treatment increased formation of lysophospholipids with a time course in accord with BK-mediated AA release, indicating that at least part of the BK-mediated AA release was likely derived from activation of phospholipase A2. BK-mediated lysophospholipid production was enhanced by pretreatment with TPA, suggesting that the mechanism of AA release before and after treatment with TPA was the same. BK-mediated AA release and lysophospholipid production was dependent on the presence of extracellular calcium, while the enhanced responses to BK in the presence of TPA were not dependent on the presence of extracellular calcium. TPA treatment also enhanced AA release and lysophospholipid production in response to the calcium ionophore A23187. From these data we propose that BK, acting at B2 receptors, promotes AA release in MDCK cells via a mechanism which is 1) independent of polyphosphoinositide hydrolysis by phospholipase C, 2) dependent upon influx of extracellular calcium and activation of phospholipase A2, and 3) enhanced by activation of protein kinase C.  相似文献   

17.
Liu MC  Sakakibara Y  Suiko M 《Cytotechnology》1997,23(1-3):143-149
By employing the affinity gel fraction technique, we have detected a 175 kDa tyrosine-O-sulfate (TyrS)-binding protein in sodium choleate extracts of the microsomal membrane fractions of bovine liver and pancreas, as well as canine liver and pancreas. Western blot analysis revealed the presence of the bovine liver TyrS-binding protein in complexes with tyrosine-sulfated proteins both in vivo and in vitro, suggesting the putative role of the former being the receptor for the latter. Using filter-grown Madin-Darby canine kidney (MDCK) cells as a model, it was demonstrated that the tyrosine-sulfated proteins synthesized were predominantly secreted into the apical medium. The results further indicate the production and differential polarized secretion of different sulfated forms of the two major secretory proteins produced by MDCK cells, fibronectin (FN) and an 80 kDa glycoprotein (gp 80), with their tyrosine-sulfated forms being predominantly secreted from the apical surface. Treatment of filter-grown MDCK cells with glycosylation inhibitors, swainsonine and 1-deoxymannojirimycin, appeared to enhance the apical secretion of tyrosine-sulfated FN and gp 80. A similar 175 kDa membrane-bound 'TyrS receptor', cross-reactive toward antiserum against the canine liver TyrS receptor, was shown to be present in MDCK cells. Pulse-chase experiments revealed its presence in complexes with newly synthesized FN and gp 80. A hypothetical model for TyrS residues serving as an apical targeting signal during the biosynthetic transport of tyrosine-sulfated proteins, as mediated by the TyrS receptor, in MDCK cells is proposed.  相似文献   

18.
Protein apical sorting in polarized epithelial cells is mediated by two different mechanisms, raft dependent and raft independent. In Madin-Darby canine kidney (MDCK) cells, an essential step for apical sorting of glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) is their coalescence into high-molecular-weight (HMW) oligomers. Here we show that this mechanism is also functional in Fischer rat thyroid cells, which possess a different sorting phenotype compared with MDCK cells. We demonstrate that, as in MDCK cells, both apical and basolateral GPI-APs associate with detergent-resistant microdomains, but that only the apical proteins are able to oligomerize into HMW complexes during their passage through the medial Golgi. We also show that oligomerization is a specific requirement for apical sorting of GPI-APs and is not used by transmembrane, non-raft-associated apical proteins.  相似文献   

19.
Three distinct atrial natriuretic factor (ANF) receptors have been identified and characterized from rat thoracic aortic cultured vascular smooth muscle (RTASM) cells, kidney tubular epithelium (MDCK), and Leydig tumor (MA-10) cells. These include 1) a disulfide-linked 140-kDa protein found in RTASM cells, which was reduced by dithiothreitol (DTT) to 70 kDa, 2) a 120-135-kDa single polypeptide protein, specific to MDCK and MA-10 cells whose Mr was not reduced by DTT, and 3) a 66-70-kDa protein prevalent in both RTASM and MDCK cells, which was not reduced by DTT. After incubation of RTASM cells with 4-azidobenzoyl 125I-ANF, labeling of the 140-kDa protein was blocked by both full-length ANF(99-126) and truncated ANF103-123. In contrast, the labeling of the 120-kDa receptor in MDCK cells was blocked only by full-length ANF(99-126). However, labeling of the 68-70-kDa receptor in both RTASM and MDCK cells was blocked by full-length ANF(99-126) and truncated ANF(103-123). Binding of 125I-ANF(99-126) to RTASM and MDCK cells was rapid, specific, and saturable with a Kd of 1.5 x 10(-10) M and binding capacity (Bmax) of 2.1 x 10(5) sites/RTASM cell and Kd 4.5 x 10(-10) M and Bmax 5 x 10(4) sites/MDCK cell, respectively. Binding of 125I-ANF(99-126) to RTASM cells was displaced with both full-length ANF(99-126) and truncated ANF(103-123), however, binding to MDCK cells was efficiently displaced only with full-length ANF. Both ANF(99-126) and ANF(103-123) stimulated cGMP in RTASM cells but only ANF(99-126) elicited cGMP in MDCK cells. Tryptic proteolysis of the high Mr single chain receptor produced only a 68-kDa fragment, whereas disulfide-linked 140-kDa receptor yielded 52-, 38-, 26-, and 14-kDa fragments. These data provide direct biochemical evidence for three distinct ANF receptors which might be linked to diverse physiological functions of ANF such as natriuresis in the kidney, vasorelaxation in vascular smooth muscle, and steroidogenic responsiveness in Leydig cells.  相似文献   

20.
A route of accumulation and elimination of therapeutic engineered nanoparticles (NPs) may be the kidney. Therefore, the interactions of different solid-core inorganic NPs (titanium-, silica-, and iron oxide-based NPs) were studied in vitro with the MDCK and LLC-PK epithelial cells as representative cells of the renal epithelia. Following cell exposure to the NPs, observations include cytotoxicity for oleic acid-coated iron oxide NPs, the production of reactive oxygen species for titanium dioxide NPs, and cell depletion of thiols for uncoated iron oxide NPs, whereas for silica NPs an apparent rapid and short-lived increase of thiol levels in both cell lines was observed. Following cell exposure to metallic NPs, the expression of the tranferrin receptor/CD71 was decreased in both cells by iron oxide NPs, but only in MDCK cells by titanium dioxide NPs. The tight association, then subsequent release of NPs by MDCK and LLC-PK kidney epithelial cells, showed that following exposure to the NPs, only MDCK cells could release iron oxide NPs, whereas both cells released titanium dioxide NPs. No transfer of any solid-core NPs across the cell layers was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号