首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Entry of Epstein-Barr virus into human lymphoblastoid cells (Daudi cells) was studied by electron microscopy. At the site of viral attachment, two distinct interactions conducive to penetration of the virus occurred between the viral envelope and cell membrane, namely, (i) simultaneous dissolution of both the envelope and cell membrane, presumably resulting in passage of viral capsids into the cytoplasm and (ii) dissolution confined to the cell membrane with resulting penetration of enveloped virus. In the latter case envelope dissolution appears to occur subsequently in the cytoplasm with release of capsids. Fusion of the viral envelope with the cell membrane was not observed. The capsids exhibited two distinct structural forms--one dense, the other translucent or light in appearance. The former disrupted near the cell membrane with release of viral cores into the cytoplasm whereas the light capsids containing dense cores migrated toward the nucleus and accumulated in the perinuclear region. Apparently the process of releasing deoxyribonucleic acid (DNA) from the light capsid is slowed down or prevented in Daudi cells. A hypothesis is presented concerning the manner in which these two types of capsids initiate infection.  相似文献   

2.
Egress of herpes simplex virus (HSV) and other herpesviruses from cells involves extensive modification of cellular membranes and sequential envelopment and deenvelopment steps. HSV glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Capsids in the nucleus undergo primary envelopment at the inner nuclear membrane (INM), and then enveloped virus particles undergo deenvelopment by fusing with the outer nuclear membrane (ONM). Capsids delivered into the cytoplasm then undergo secondary envelopment, involving trans-Golgi network (TGN) membranes. The deenvelopment step involves HSV glycoproteins gB and gH/gL acting in a redundant fashion. This fusion has features common to the fusion that occurs between the virion envelope and cellular membranes when HSV enters cells, a process requiring gB, gD, and gH/gL. Whether HSV gD also participates (in a redundant fashion with gB or gH/gL) in deenvelopment has not been characterized. Secondary envelopment in the cytoplasm is known to involve HSV gD and gE/gI, also acting in a redundant fashion. Whether gB might also contribute to secondary envelopment, collaborating with gD and gE/gI, is also not clear. To address these questions, we constructed an HSV double mutant lacking gB and gD. The HSV gB(-)/gD(-) mutant exhibited no substantial defects in nuclear egress. In contrast, secondary envelopment was markedly reduced, and there were numerous unenveloped capsids that accumulated in the cytoplasm, as well as increased numbers of partially enveloped capsids and morphologically aberrant enveloped particles with thicker, oblong tegument layers. These defects were different from those observed with HSV gD(-)/gE(-)/gI(-) mutants, which accumulated capsids in large, aggregated masses in the cytoplasm. Our results suggest that HSV gB functions in secondary envelopment, apparently acting downstream of gE/gI.  相似文献   

3.
Development of the herpes-type virus of the frog kidney tumor was investigated by electron microscopy and high-resolution autoradiography in eyechamber transplants of tumor maintained at 7.5 C for up to 27 weeks. Virus particles were first detected at 10 weeks in nuclei containing aggregates of dense granular material. The initial incorporation of a pulse of (3)H-thymidine into these aggregates indicated that they contained newly synthesized viral deoxyribonucleic acid. Capsids enclosing doubleshelled cores were labeled with (3)H-thymidine before capsids with dense cores, and intermediate core forms were observed, suggesting that the double-shelled core transforms into the dense core. Particles with dense cores were observed while being enveloped by budding through the inner membrane of the nuclear envelope, and subsequently while being unenveloped in passing through the outer membrane into the cytoplasm. Virus particles within the cytoplasm acquired fibrillar coats and budded into vesicles, from which they were released, in enveloped form, at the cell surface. Tubular forms and particles considerably smaller than virus particles were regularly encountered in infected nuclei, and the relationship of these forms to virus replication is discussed.  相似文献   

4.
Herpesviruses remodel host membranes for virus egress   总被引:1,自引:0,他引:1  
Herpesviruses replicate their DNA and package this DNA into capsids in the nucleus. These capsids then face substantial obstacles to their release from cells. Unlike other DNA viruses, herpesviruses do not depend on disruption of nuclear and cytoplasmic membranes for their release. Enveloped particles are formed by budding through inner nuclear membranes, and then these perinuclear enveloped particles fuse with outer nuclear membranes. Unenveloped capsids in the cytoplasm are decorated with tegument proteins and then undergo secondary envelopment by budding into trans-Golgi network membranes, producing infectious particles that are released. In this Review, we describe the remodelling of host membranes that facilitates herpesvirus egress.  相似文献   

5.
In this work we used brefeldin A (BFA), a specific inhibitor of export to the Golgi apparatus, to study pseudorabies virus viral glycoprotein processing and virus egress. BFA had little effect on initial synthesis and cotranslational modification of viral glycoproteins in the endoplasmic reticulum (ER), but it disrupted subsequent glycoprotein maturation and export. Additionally, single-step growth experiments demonstrated that after the addition of BFA, accumulation of infectious virus stopped abruptly. BFA interruption of virus egress was reversible. Electron microscopic analysis of infected cells demonstrated BFA-induced disappearance of the Golgi apparatus accompanied by a dramatic accumulation of enveloped virions between the inner and outer nuclear membranes and also in the ER. Large numbers of envelope-free capsids were also present in the cytoplasm of all samples. In control samples, these capsids were preferentially associated with the forming face of Golgi bodies and acquired a membrane envelope derived from the trans-cisternae. Our results are consistent with a multistep pathway for envelopment of pseudorabies virus that involves initial acquisition of a membrane by budding of capsids through the inner leaf of the nuclear envelope followed by deenvelopment and release of these capsids from the ER into the cytoplasm in proximity to the trans-Golgi. The released capsids then acquire a bilaminar double envelope containing mature viral glycoproteins at the trans-Golgi. The resulting double-membraned virus is transported to the plasma membrane, where membrane fusion releases a mature, enveloped virus particle from the cell.  相似文献   

6.
Unlike other subclasses of the Retroviridae the Spumavirinae, its prototype member being the so-called human foamy virus (HFV), require the expression of the envelope (Env) glycoprotein for viral particle egress. Both the murine leukemia virus (MuLV) Env and the vesicular stomatitis virus G protein, which efficiently pseudotype other retrovirus capsids, were not able to support export of HFV particles. Analysis of deletion and point mutants of the HFV Env protein revealed that the HFV Env cytoplasmic domain (CyD) is dispensable for HFV particle envelopment, release, and infectivity, whereas deletion of the membrane-spanning-domain (MSD) led to an accumulation of naked capsids in the cytoplasm. Neither alternative membrane association of HFV Env deletion mutants lacking the MSD and CyD via phosphoglycolipid anchor nor domain swapping mutants, with the MSD or CyD of MuLV Env and VSV-G exchanged against the corresponding HFV domains, could restore particle envelopment and the release defect of pseudotypes. However, replacement of the HFV MSD with that of MuLV led to budding of HFV capsids at the intracellular membranes. These virions were of apparently wild-type morphology but were not naturally released into the supernatant and they were noninfectious.  相似文献   

7.
Herpesvirus envelopment is assumed to follow an uneconomical pathway including primary envelopment at the inner nuclear membrane, de-envelopment at the outer nuclear membrane, and reenvelopment at the trans-Golgi network. In contrast to the hypothesis of de-envelopment by fusion of the primary envelope with the outer nuclear membrane, virions were demonstrated to be transported from the perinuclear space to rough endoplasmic reticulum (RER) cisternae. Here we show by high-resolution microscopy that herpes simplex virus 1 envelopment follows two diverse pathways. First, nuclear envelopment includes budding of capsids at the inner nuclear membrane into the perinuclear space whereby tegument and a thick electron dense envelope are acquired. The substance responsible for the dense envelope is speculated to enable intraluminal transportation of virions via RER into Golgi cisternae. Within Golgi cisternae, virions are packaged into transport vacuoles containing one or several virions. Second, for cytoplasmic envelopment, capsids gain direct access from the nucleus to the cytoplasm via impaired nuclear pores. Cytoplasmic capsids could bud at the outer nuclear membrane, at membranes of RER, Golgi cisternae, and large vacuoles, and at banana-shaped membranous entities that were found to continue into Golgi membranes. Envelopes originating by budding at the outer nuclear membrane and RER membrane also acquire a dense substance. Budding at Golgi stacks, designated wrapping, results in single virions within small vacuoles that contain electron-dense substances between envelope and vacuolar membranes.  相似文献   

8.
In cells infected with herpes simplex viruses the capsids acquire an envelope at the nuclear membrane and are usually found in the cytoplasm in structures bound by membranes. Infected cells also accumulate unenveloped capsids alone or juxtaposed to cytoplasmic membranes. The juxtaposed capsids have been variously interpreted as either undergoing terminal deenvelopment resulting from fusion of the envelope with the membrane of the cytoplasmic vesicles or undergoing sequential envelopment and deenvelopment as capsids transit the cytoplasm into the extracellular space. Recent reports have shown that (i) wild-type virus attaches to but does not penetrate cells expressing glycoprotein D (G. Campadelli-Fiume, M. Arsenakis, F. Farabegoli, and B. Roizman, J. Virol. 62:159-167, 1988) and that (ii) a mutation in glycoprotein D enables the mutant virus to productively infect cells expressing the wild-type glycoprotein (G. Campadelli-Fiume, S. Qi, E. Avitabile, L. Foa-Tomasi, R. Brandimarti, and B. Roizman, J. Virol. 64:6070-6079, 1990). If the unenveloped capsids in the cytoplasm result from fusion of the cytoplasmic membranes with the envelopes of viruses transiting the cytoplasm, cells infected with virus carrying the mutation in glycoprotein D should contain many more unenveloped capsids in the cytoplasm inasmuch as there would be little or no restriction in the fusion of the envelope with cytoplasmic membranes. Comparison of thin sections of baby hamster kidney cells infected with wild-type and mutant viruses indicated that this was the case. Moreover, in contrast to the wild-type parent, the mutant virus was not released efficiently from infected cells. The conclusion that the unenveloped capsids are arrested forms of deenveloped capsids is supported by the observation that the unenveloped capsids were unstable in that they exhibited partially extruded DNA.  相似文献   

9.
Maturation in herpesviruses initiates in the nucleus of the infected cell, with encapsidation of viral DNA to form nucleocapsids, and concludes with envelopment in the cytoplasm to form infectious virions that egress the cell. The entire process of virus maturation is orchestrated by protein-protein interactions and enzymatic activities of viral and host origin. Viral tegument proteins play important roles in maintaining the structural stability of capsids and directing the acquisition of virus envelope. Envelopment occurs at modified host membranes and exploits host vesicular trafficking. In this review, we summarize current knowledge of and concepts in human cytomegalovirus (HCMV) maturation and their parallels in other herpesviruses, with an emphasis on viral and host factors that regulate this process.  相似文献   

10.
We determined the effects of noninfective reovirus components on cellular deoxyribonucleic acid (DNA) synthesis. Reovirus inactivated by ultraviolet light inhibited cellular DNA synthesis, whereas reovirus cores and empty capsids did not. Both cores and empty capsids were adsorbed to cells. Adenine-rich ribonucleic acid (RNA) from reovirus, adsorbed to cells in the presence of diethyl-aminoethyl-dextran, produced a partial inhibition of DNA synthesis. RNA was synthesized in the presence of actinomycin D after infection with ultraviolet light-irradiated reovirus, and this RNA synthesis was not due to multiplicity reactivation of virus infectivity. These data suggest that viral structural proteins do not inhibit DNA synthesis and that the inhibition produced by ultraviolet-irradiated virus may be mediated in part or in toto by a newly synthesized viral product.  相似文献   

11.
Primary envelopment of several herpesviruses has been shown to occur by budding of intranuclear capsids through the inner nuclear membrane. By subsequent fusion of the primary envelope with the outer nuclear membrane, capsids are released into the cytoplasm and gain their final envelope by budding into vesicles in the trans-Golgi area. We show here that the product of the UL34 gene of pseudorabies virus, an alphaherpesvirus of swine, is localized in transfected and infected cells in the nuclear membrane. It is also detected in the envelope of virions in the perinuclear space but is undetectable in intracytoplasmic and extracellular enveloped virus particles. Conversely, the tegument protein UL49 is present in mature virus particles and absent from perinuclear virions. In the absence of the UL34 protein, acquisition of the primary envelope is blocked and neither virus particles in the perinuclear space nor intracytoplasmic capsids or virions are observed. However, light particles which label with the anti-UL49 serum are formed in the cytoplasm. We conclude that the UL34 protein is required for primary envelopment, that the primary envelope is biochemically different from the final envelope in that it contains the UL34 protein, and that perinuclear virions lack the tegument protein UL49, which is present in mature virions. Thus, we provide additional evidence for a two-step envelopment process in herpesviruses.  相似文献   

12.
P L Ward  W O Ogle    B Roizman 《Journal of virology》1996,70(7):4623-4631
In cells infected with herpes simplex virus 1 (HSV-1), the viral proteins ICP5 (infected-cell protein 5) and VP19c (the product of UL38) are associated with mature capsids, whereas the same proteins, along with ICP35, are components of immature capsids. Here we report that ICP35, ICP5, and UL38 (VP19c) coalesce at late times postinfection and form antigenically dense structures located at the periphery of nuclei, close to but not abutting nuclear membranes. These structures were formed in cells infected with a virus carrying a temperature-sensitive mutation in the UL15 gene at nonpermissive temperatures. Since at these temperatures viral DNA is made but not packaged, these structures must contain the proteins for immature-capsid assembly and were therefore designated assemblons. These assemblons are located at the periphery of a diffuse structure composed of proteins involved in DNA synthesis. This structure overlaps only minimally with the assemblons. In contrast, tegument proteins were located in asymmetrically distributed structures also partially overlapping with assemblons but frequently located nearer to nuclear membranes. Of particular interest is the finding that the UL15 protein colocalized with the proteins associated with viral DNA synthesis rather than with assemblons, suggesting that the association with DNA may take place during its synthesis and precedes the involvement of this protein in packaging of the viral DNA into capsids. The formation of three different compartments consisting of proteins involved in viral DNA synthesis, the capsid proteins, and tegument proteins suggests that there exists a viral machinery which enables aggregation and coalescence of specific viral protein groups on the basis of their function.  相似文献   

13.
Egress of herpes simplex virus type 1 (HSV-1) from the nucleus of the infected cell to extracellular spaces involves a number of distinct steps, including primary envelopment by budding into the perinuclear space, de-envelopment into the cytoplasm, cytoplasmic reenvelopment, and translocation of enveloped virions to extracellular spaces. UL20/gK-null viruses are blocked in cytoplasmic virion envelopment and egress, as indicated by an accumulation of unenveloped or partially enveloped capsids in the cytoplasm. Similarly, UL11-null mutants accumulate unenveloped capsids in the cytoplasm. To assess whether UL11 and UL20/gK function independently or synergistically in cytoplasmic envelopment, recombinant viruses having either the UL20 or UL11 gene deleted were generated. In addition, a recombinant virus containing a deletion of both UL20 and UL11 genes was constructed using the HSV-1(F) genome cloned into a bacterial artificial chromosome. Ultrastructural examination of virus-infected cells showed that both UL20- and UL11-null viruses accumulated unenveloped capsids in the cytoplasm. However, the morphology and distribution of the accumulated capsids appeared to be distinct, with the UL11-null virions forming aggregates of capsids having diffuse tegument-derived material and the UL20-null virus producing individual capsids in close juxtaposition to cytoplasmic membranes. The UL20/UL11 double-null virions appeared morphologically similar to the UL20-null viruses. Experiments on the kinetics of viral replication revealed that the UL20/UL11 double-null virus replicated in a manner similar to the UL20-null virus. Additional experiments revealed that transiently expressed UL11 localized to the trans-Golgi network (TGN) independently of either gK or UL20. Furthermore, virus infection with the UL11/UL20 double-null virus did not alter the TGN localization of transiently expressed UL11 or UL20 proteins, indicating that these proteins did not interact. Taken together, these results show that the intracellular transport and TGN localization of UL11 is independent of UL20/gK functions, and that UL20/gK are required and function prior to UL11 protein in virion cytoplasmic envelopment.  相似文献   

14.
The late stages of assembly of herpes simplex virus (HSV) and other herpesviruses are not well understood. Acquisition of the final virion envelope apparently involves interactions between viral nucleocapsids coated with tegument proteins and the cytoplasmic domains of membrane glycoproteins. This promotes budding of virus particles into cytoplasmic vesicles derived from the trans-Golgi network or endosomes. The identities of viral membrane glycoproteins and tegument proteins involved in these processes are not well known. Here, we report that HSV mutants lacking two viral glycoproteins, gD and gE, accumulated large numbers of unenveloped nucleocapsids in the cytoplasm. These aggregated capsids were immersed in an electron-dense layer that appeared to be tegument. Few or no enveloped virions were observed. More subtle defects were observed with an HSV unable to express gD and gI. A triple mutant lacking gD, gE, and gI exhibited more severe defects in envelopment. We concluded that HSV gD and the gE/gI heterodimeric complex act in a redundant fashion to anchor the virion envelope onto tegument-coated capsids. In the absence of either one of these HSV glycoproteins, envelopment proceeds; however, without both gD and gE, or gE/gI, there is profound inhibition of cytoplasmic envelopment.  相似文献   

15.
The tegument is an integral and essential structural component of the herpes simplex virus type 1 (HSV-1) virion. The UL37 open reading frame of HSV-1 encodes a 120-kDa virion polypeptide which is a resident of the tegument. To analyze the function of the UL37-encoded polypeptide a null mutation was generated in the gene encoding this protein. In order to propagate this mutant virus, transformed cell lines that express the UL37 gene product in trans were produced. The null mutation was transferred into the virus genome using these complementing cell lines. A mutant virus designated KDeltaUL37 was isolated based on its ability to form plaques on the complementing cell line but not on nonpermissive (noncomplementing) Vero cells. This virus was unable to grow in Vero cells; therefore, UL37 encodes an essential function of the virus. The mutant virus KDeltaUL37 produced capsids containing DNA as judged by sedimentation analysis of extracts derived from infected Vero cells. Therefore, the UL37 gene product is not required for DNA cleavage or packaging. The UL37 mutant capsids were tagged with the smallest capsid protein, VP26, fused to green fluorescent protein. This fusion protein decorates the capsid shell and consequently the location of the capsid and the virus particle can be visualized in living cells. Late in infection, KDeltaUL37 capsids were observed to accumulate at the periphery of the nucleus as judged by the concentration of fluorescence around this organelle. Fluorescence was also observed in the cytoplasm in large puncta. Fluorescence at the plasma membrane, which indicated maturation and egress of virions, was observed in wild-type-infected cells but was absent in KDeltaUL37-infected cells. Ultrastructural analysis of thin sections of infected cells revealed clusters of DNA-containing capsids in the proximity of the inner nuclear membrane. Occasionally enveloped capsids were observed between the inner and outer nuclear membranes. Clusters of unenveloped capsids were also observed in the cytoplasm of KDeltaUL37-infected cells. Enveloped virions, which were observed in the cytoplasm of wild-type-infected cells, were never detected in the cytoplasm of KDeltaUL37-infected cells. Crude cell fractionation of infected cells using detergent lysis demonstrated that two-thirds of the UL37 mutant particles were associated with the nuclear fraction, unlike wild-type particles, which were predominantly in the cytoplasmic fraction. These data suggest that in the absence of UL37, the exit of capsids from the nucleus is slowed. UL37 mutant particles can participate in the initial envelopment at the nuclear membrane, although this process may be impaired in the absence of UL37. Furthermore, the naked capsids deposited in the cytoplasm are unable to progress further in the morphogenesis pathway, which suggests that UL37 is also required for egress and reenvelopment. Therefore, the UL37 gene product plays a key role in the early stages of the maturation pathway that give rise to an infectious virion.  相似文献   

16.
17.
Envelope glycoprotein M (gM) and the complex formed by glycoproteins E (gE) and I (gI) are involved in the secondary envelopment of pseudorabies virus (PrV) particles in the cytoplasm of infected cells. In the absence of the gE-gI complex and gM, envelopment is blocked and capsids surrounded by tegument proteins accumulate in the cytoplasm (A. R. Brack, J. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 73:5364-5372, 1999). Here we demonstrate by yeast two-hybrid analyses that the cytoplasmic domains of gE and gM specifically interact with the C-terminal part of the UL49 gene product of PrV, which represents a major tegument protein and which is homologous to VP22 of herpes simplex virus type 1. However, deletion of the UL49 gene from PrV had only minor effects on viral replication, and ultrastructural analyses of infected cells confirmed that virus maturation and egress, including secondary envelopment in the cytoplasm, were not detectably affected by the absence of UL49. Moreover, the UL49 gene product was shown to be dispensable for virion localization of gE and gM, and mutants lacking either gE or gM incorporated the UL49 protein efficiently into virus particles. In contrast, a PrV mutant with deletions of gE-gI and gM failed to incorporate the UL49 protein despite apparently unaltered intracytoplasmic UL49 expression. In summary, we describe specific interactions between herpesvirus envelope and tegument proteins which may play a role in secondary envelopment during herpesvirus virion maturation.  相似文献   

18.
Homologs of the UL25 gene product of herpes simplex virus (HSV) have been identified in all three subfamilies of the Herpesviridae. However, their exact function during viral replication is not yet known. Whereas earlier studies indicated that the UL25 protein of HSV-1 is not required for cleavage of newly replicated viral DNA but is necessary for stable encapsidation (A. R. McNab, P. Desai, S. Person, L. Roof, D. R. Thompson, W. W. Newcomb, J. C. Brown, and F. L. Homa, J. Virol. 72:1060-1070, 1998), viral DNA packaging has recently been demonstrated to occur in the absence of UL25, although at significantly decreased levels compared to wild-type HSV-1 (N. Stow, J. Virol. 75:10755-10765 2001). To clarify the functional role of UL25 we analyzed the homologous protein of the alphaherpesvirus pseudorabies virus (PrV). PrV UL25 was found to be essential for viral replication, as a mutant virus lacking the UL25 protein required UL25-expressing cells for productive propagation. In the absence of the UL25 protein, newly replicated PrV DNA was cleaved and DNA-containing C-type capsids were detected in infected cell nuclei. However, although capsids were frequently found in close association with the inner nuclear membrane, nuclear egress was not observed. Consequently, no capsids were found in the cytoplasm, resulting in an inhibition of virion morphogenesis. In contrast, the formation of capsidless enveloped tegument structures (L particles) in the cytoplasm was readily observed. Thus, our data demonstrate that the PrV UL25 protein is not essential for cleavage and encapsidation of viral genomes, although both processes occur more efficiently in the presence of the protein. However, the presence of the PrV UL25 protein is a prerequisite for nuclear egress. By immunoelectron microscopy, we detected UL25-specific label on DNA-containing C capsids but not on other intranuclear immature or defective capsid forms. Thus, the PrV UL25 protein may represent the hitherto missing trigger that allows primary envelopment preferably of DNA-filled C capsids.  相似文献   

19.
Margaretten, William (College of Physicians and Surgeons of Columbia University, New York, N.Y.), Councilman Morgan, Herbert S. Rosenkranz, and Harry M. Rose. Effect of hydroxyurea on virus development. I. Electron microscopic study of the effect on the development of bacteriophage T4. J. Bacteriol. 91:823-833. 1966.-Double fixation in gluteraldehyde and osmium tetroxide and the application of lead staining revealed details of viral structure not previously observed in thin sections. Bacteriophage presumed to have injected its deoxyribonucleic acid (DNA) exhibited a dense, hollow, disc-shaped core. Within the cytoplasm of infected bacteria, the peripheral membrane of the viral heads was clearly visible. Aberrant forms containing the hollow core and believed to be devoid of DNA were encountered in studies of the normal course of development. Hydroxyurea, which is believed to interfere with the production of infective bacteriophage by inhibiting DNA synthesis, resulted in the appearance of viral particles with the hollow disc or with bizarre, distorted cores. However, a significant number of viral heads looked entirely normal and presumably contained a full complement of DNA. Hypotheses are presented to explain these observations.  相似文献   

20.
Electron Microscopy of Herpes Simplex Virus: II. Sequence of Development   总被引:45,自引:32,他引:13  
Examination of infected cells at sequential intervals after infection revealed that the first viral forms to appear were capsids enclosing cores of low density. Not until the 6th hr were dense cores encountered, and at approximately the same time enveloped virus was seen. Envelopment occurred most frequently in close proximity to the nuclear surface, although the process was also encountered within the nuclear matrix and in the cytoplasm. There was often extensive proliferation of the nuclear membrane. Envelopment of the virus by budding from the cell surface was not observed. It was concluded that enveloped virus consitutes the infectious particle and that the unenveloped capsid is unstable outside the cell. Nevertheless, it is likely that capsids enclosing infectious nucleic acid can pass directly from one cell to another after fusion has taken place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号