首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
A cDNA clone, called CLB1, was isolated from a cDNA library from tomato (Lycopersicon esculentum) and characterized. The CLB1 cDNA contains an open reading frame of 1518 bp, and encodes a putative protein of 506 amino acids with a predicted molecular mass of 54 633 Da. The deduced CLB1 amino acid sequence contains a domain that exhibits from 26% to 37% identity with the Ca2+-dependent lipid-binding domains of cytosolic phospholipase A2, protein kinase C, Rabphilin-3A, and Synaptotagmin I of animals. Southern blot analysis indicates that the CLB1 gene belongs to a small gene family in the tomato genome. The CLB1 mRNA is preferentially expressed in fruit tissues.  相似文献   

4.
The Saccharomyces cerevisiae RNA polymerase II subunit gene RPB9 was isolated and sequenced. RPB9 is a single copy gene on chromosome VII. The RPB9 sequence predicts a protein of 122 amino acids with a molecular mass of 14,200 Da. The yeast RPB9 subunit is similar in size and sequence to a protein encoded by DNA adjacent to the suppressor of the Hairy Wing gene in Drosophila melanogaster. Deletion of the RPB9 gene produced cells that were heat- and cold-sensitive. The RPB9 subunit, like the previously described RNA polymerase II subunit RPB4, is not essential for synthesis of mRNA, but is required for normal cell growth over a wide temperature range.  相似文献   

5.
Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T0). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T1) produced the highest GUS activity when treated with 150 μM Cu2+ compared to the control (without Cu2+). However, Zn2+ and Fe2+ treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T1 seedlings of tomato when subjected to Cu2+ ions.  相似文献   

6.
7.
The ancestor of tomato underwent whole genome triplication ca. 71 Myr ago followed by widespread gene loss. However, few of the triplicated genes are retained in modern day tomato including lycopene beta cyclase that mediates conversion of lycopene to β-carotene. The fruit specific β-carotene formation is mediated by a chromoplast-specific paralog of lycopene beta cyclase (CYC-B) gene. Presently limited information is available about how the variations in CYC-B gene contributed to its neofunctionalization. CYC-B gene in tomato clade contained several SNPs and In-Dels in the coding sequence (33 haplotypes) and promoter region (44 haplotypes). The CYC-B gene coding sequence in tomato appeared to undergo purifying selection. The transit peptide sequence of CYC-B protein was predicted to have a stronger plastid targeting signal than its chloroplast specific paralog indicating a possible neofunctionalization. In promoter of two Bog (Beta old gold) mutants, a NUPT (nuclear plastid) DNA fragment of 256 bp, likely derived from a S. chilense accession, was present. In transient expression assay, this promoter was more efficient than the “Beta type” promoter. CARGATCONSENSUS box sequences are required for the binding of the MADS-box regulatory protein RIPENING INHIBITOR (RIN). The loss of CARGATCONSENSUS box sequence from CYC-B promoter in tomato may be related to attenuation of its efficiency to promote higher accumulation of β-carotene than lycopene during fruit ripening.  相似文献   

8.
9.

Background and Aims

It is known that the miniature inverted-repeat terminal element (MITE) preferentially inserts into low-copy-number sequences or genic regions. Characterization of the second largest subunit of low-copy nuclear RNA polymerase II (RPB2) has indicated that MITE and indels have shaped the homoeologous RPB2 loci in the St and H genome of Eymus species in Triticeae. The aims of this study was to determine if there is MITE in the RPB2 gene in Hordeum genomes, and to compare the gene evolution of RPB2 with other diploid Triticeae species. The sequences were used to reconstruct the phylogeny of the genus Hordeum.

Methods

RPB2 regions from all diploid species of Hordeum, one tetraploid species (H. brevisubulatum) and ten accessions of diploid Triticeae species were amplified and sequenced. Parsimony analysis of the DNA dataset was performed in order to reveal the phylogeny of Hordeum species.

Key Results

MITE was detected in the Xu genome. A 27–36 bp indel sequence was found in the I and Xu genome, but deleted in the Xa and some H genome species. Interestingly, the indel length in H genomes corresponds well to their geographical distribution. Phylogenetic analysis of the RPB2 sequences positioned the H and Xa genome in one monophyletic group. The I and Xu genomes are distinctly separated from the H and Xa ones. The RPB2 data also separated all New World H genome species except H. patagonicum ssp. patagonicum from the Old World H genome species.

Conclusions

MITE and large indels have shaped the RPB2 loci between the Xu and H, I and Xa genomes. The phylogenetic analysis of the RPB2 sequences confirmed the monophyly of Hordeum. The maximum-parsimony analysis demonstrated the four genomes to be subdivided into two groups.Key words: Molecular evolution, RPB2, Hordeum, transposable element, phylogeny  相似文献   

10.
The effect of elevated O3 on tomato plants of three different genotypes (wild-type, a jasmonic acid (JA) defense-enhanced genotype (35S) and a JA-deficient genotype (spr2)) grown in association with the whitefly Bemisia tabaci Gennadius biotype B was examined in the field in open-top chambers. We experimentally tested the hypothesis that elevated O3 tends to reduce the nutrition of tomato plants, and to increase the SA-dependent pathway defenses and the secondary metabolites, and therefore decrease the population fitness of the whitefly. The results show that for all three tomato genotypes, elevated O3 reduced the soluble sugars and free amino acids, increased the phenylalanine ammonia-lyase enzyme activity and the accumulated salicylic acid (SA), and up-regulated the pathogenesis-related protein (PR1), which is commonly considered to be the whitefly-resistance gene product involved in SA-dependent defense. Elevated O3 did not affect the JA level in any of the three plant genotypes, but it increased the levels of some secondary metabolites, including total phenolics and condensed tannins. Elevated O3 prolonged the developmental time of whiteflies fed on the three plant genotypes, and it also reduced the fecundity and the intrinsic rate of increase of whiteflies fed on either the 35S or the wild-type plants. These results suggest that elevated O3 reduces the nutrition of tomato plants and enhances their SA content, relative PR mRNA expression and secondary metabolism, resulting in decreased fitness of whiteflies on these tomato plants.  相似文献   

11.
12.
13.
14.
15.
In an effort to understand the molecular mechanism of gibberellin (GA) action, we have cloned and performed an initial characterization of three cDNAs (GAD1, 2, and 3) which correspond to RNAs that become less abundant by 2 h after treatment of tomato (Lycopersicon esculentum Mill.) shoot tissue with gibberellic acid (GA3). Treatment with either auxin or ethephon also decreases the abundance of all three of the GAD RNAs. The tomato ethylene-insensitive mutant, Nr, and the GA-deficient mutant, gib1, were used to show that GA or auxin regulation of GAD RNA abundance is not dependent on ethylene sensitivity, and that ethylene or auxin regulation is not dependent on normal levels of gibberellin biosynthesis. Treatment with abscisic acid (ABA) antagonizes the GA induced suppression of the GAD1 and GAD2 RNAs. GAD1 is similar to type-II wound-inducible plant proteinase inhibitors. Like the well-characterized proteinase inhibitor II (pin II) of tomato, the GAD1 and GAD2 RNAs are wound inducible. Induction of pin II and GAD1 RNA in gib1 was found to require less-severe wounding than was required using wild-type plants or plants doubly mutant for gib1 and sit (the sit mutation causes ABA deficiency). The predicted GAD2 protein sequence is similar to 2-oxoglutarate-dependent dioxygenases while the predicted GAD3 protein sequence is similar to proteins belonging to the nonmetalloshort-chain alcohol-dehydrogenase family, especially the T ASSELSEED2 (TS2) gene of maize and bacterial hydroxysteroid dehydrogenases.  相似文献   

16.
Extensins comprise a family of structural cell wall hydroxyproline-rich glycoproteins in plants. Two tomato genomic clones, Tom J-10 and Tom L-4, were isolated from a tomato genomic DNA library byin situ plaque hybridization with extensin DNA probes. Tom J-10 encoded an extensin with 388 amino acid residues and a predicted molecular mass of 43 kDa. The Tom J-10 encoded extensin lacked a typical signal peptide sequence, but contained two distinct protein domains consisting of 19 tandem repeats of Ser-Pro4-Ser-Pro-Lys-Tyr-Val-Tyr-Lys at the amino terminus which were directly followed by 8 tandem repeats of the consensus sequence Ser-Pro4-Tyr3-Lys-Ser-Pro4-Ser-Pro at the carboxy terminus. RNA blot hybridization analysis with the Tom J-10 extensin probe demonstrated the presence of a 4.0 kb tomato stem mRNA which accumulated markedly in response to wounding. Tom L-4 encoded an extensin with 322 amino acid residues and a predicted molecular mass of 35 kDa. The Tom L-4 encoded extensin contained a typical signal peptide sequence at the amino terminus and was followed by at least 3 distinct domains. These domains consisted of an amino terminal domain containing several Lys-Pro and Ser-Pro4 repeat units, a central domain with repeats of the consensus sequence Ser-Pro2–5-Thr-Pro-Ser-Tyr-Glu-His-Pro-Lys-Thr-Pro, and a carboxy terminal domain containing repeats of the consensus sequence Ser-Ser-Pro4-Ser-Pro-Ser-Pro4-Thr-Tyr1–3. RNA blot hybridization analysis with the Tom L-4 extensin probe demonstrated the presence of a 2.6 kb tomato stem mRNA which accumulated in response to wounding.  相似文献   

17.
Two tomato cDNA libraries were synthesized from poly(A)+ RNAs isolated from unwounded and wounded tomato stems. These cDNA libraries were packaged in gt10 and screened by in situ plaque hybridization with a tomato extensin gene clone (pTom 5.10). Several cDNA clones were identified and isolated from both libraries in this manner and subjected to restriction enzyme digestion, Southern gel blot hybridization, RNA gel blot hybridization, and DNA sequence analyses. From these analyses, the various cDNA clones were found to fall into one of five distinct classes (classes I–V). Class I clones hybridized to a 4.0 kb mRNA which accumulated markedly after wounding and encoded an extensin characterized largely by Ser-(Pro)4-Ser-Pro-Ser-(Pro)4-(Tyr)3-Lys repeats. Class II clones hybridized to a 2.6 kb mRNA which showed no accumulation following wounding and encoded an extensin containing Ser-(Pro)4-Ser-Pro-Ser-(Pro)4-Thr-(Tyr)1–3-Ser repeats. Class III clones hybridized to a 0.6 kb mRNA which greatly accumulated in response to wounding and encoded a glycine-rich protein (GRP) with (Gly)2–6-Tyr-Pro and(Gly)2–6-Arg repeats. Class IV clones contained both class I and class III DNA sequences and consequently hybridized to both the 4.0 kb and the 0.6 kb wound-accumulating mRNAs; these clones encoded a portion of a GRP sequence on one DNA strand and encoded a portion of an extensin sequence on the other DNA strand. Class V clones hybridized to a 2.3 kb mRNA which decreased following wounding and encoded a GRP sequence characterized by (Gly)2–5-Arg repeats.  相似文献   

18.
Neurons face a changeable microenvironment and therefore need mechanisms that allow rapid switch on/off of their cytoprotective and apoptosis-inducing signaling pathways. Cellular mechanisms that control apoptosis activation include the regulation of pro/antiapoptotic mRNAs through their 3′-untranslated region (UTR). This region holds binding elements for RNA-binding proteins, which can control mRNA translation. Here we demonstrate that heat shock protein 27 (Hsp27) prevents oxidative stress–induced cell death in cerebellar granule neurons by specific regulation of the mRNA for the proapoptotic BH3-only protein, Bim. Hsp27 depletion induced by oxidative stress using hydrogen peroxide (H2O2) correlated with bim gene activation and subsequent neuronal death, whereas enhanced Hsp27 expression prevented these. This effect could not be explained by proteasomal degradation of Bim or bim promoter inhibition; however, it was associated with a specific increase in the levels of bim mRNA and with its binding to Hsp27. Finally, we determined that enhanced Hsp27 expression in neurons exposed to H2O2 or glutamate prevented the translation of a reporter plasmid where bim-3′UTR mRNA sequence was cloned downstream of a luciferase gene. These results suggest that repression of bim mRNA translation through binding to the 3′UTR constitutes a novel cytoprotective mechanism of Hsp27 during stress in neurons.  相似文献   

19.
20.
RPB4 encodes the fourth-largest RNA polymerase II subunit in Saccharomyces cerevisiae. The RPB4 gene was cloned and sequenced, and its identity was confirmed by amino acid sequence analysis of tryptic peptides from the purified subunit. The RPB4 DNA sequence predicted a protein of 221 amino acids with a molecular mass of 25,414 daltons. The central 100 amino acids of the RPB4 protein were found to be similar to a segment of the major sigma subunit in Escherichia coli RNA polymerase. Deletion of RPB4 produced cells that were heat and cold sensitive but could grow, albeit slowly, at intermediate temperatures. RNA polymerase II lacking the RPB4 subunit exhibited markedly reduced activity in crude extracts in vitro. The RPB4 subunit, although not essential for mRNA synthesis or enzyme assembly, was essential for normal levels of RNA polymerase II activity and indispensable for cell viability over a wide temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号