首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines the influence of the growth promoter, lepidimoic acid, on the level of an important cytosolic signal metabolite, fructose 2,6-bisphosphate (Fru-2,6-P2), which can activate pyrophosphatedependent:phosphofructokinase (PFP, EC 2.7.1.90), and on glycolytic metabolism in Amaranthus caudatus seedlings. Fru-2,6-P2 concentrations were respectively increased by approximately 2-, 3- and 4-fold when the seedlings were treated with 0.3, 3 and 30 mM lepidimoic acid. Exogenous lepidimoic acid also affected levels of glycolytic intermediates in the seedlings. The increase in fructose 1,6-bisphosphate and decreases in fructose 6-phosphate and glucose 6-phosphate were found in response to the elevated concentration of lepidimoic acid. These results suggest that lepidimoic acid may affect glycolytic metabolism in the Amaranthus seedlings by increasing the activity of PFP due to increasing level of Fru-2,6-P2.  相似文献   

2.
The catalytic direction of pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP; EC 2.7.1.90) in coleoptiles of rice ( Oryza sativa L.) seedlings subjected to anoxia stress is discussed. The stress greatly induced ethanol synthesis and increased activities of alcohol dehydrogenase (ADH; EC 1.1.1.1) and pyruvate decarboxylase (PDC; EC 4.1.1.1) in the coleoptiles, whereas the elevated PDC activity was much lower than the elevated ADH activity, suggesting that PDC may be one of the limiting factors for ethanolic fermentation in rice coleoptiles. Anoxic stress decreased concentrations of fructose 6-phosphate (Fru-6-P) and glucose 6-phosphate, and increased concentration of fructose 1,6-bisphosphate (Fru-1,6-bisP) in the coleoptiles. PFP activity in rice coleoptiles was low in an aerobic condition and increased during the stress, whereas no significant increase was found in ATP:fructose-6-phosphate 1-phosphotransferase (PFK; EC 2.7.1.11) activity in stressed coleoptiles. Fructose 2,6-bisphosphate concentration in rice coleoptiles was increased by the stress and pyrophosphate concentration was above the Km for the forward direction of PFP and was sufficient to inhibit the reverse direction of PFP. Under stress conditions the potential of carbon flux from Fru-6-P toward ethanol through PFK may be much lower than the potential of carbon flux from pyruvate toward ethanol through PDC. These results suggest that PFP may play an important role in maintaining active glycolysis and ethanolic fermentation in rice coleoptiles in anoxia.  相似文献   

3.
Previously, we reported that inorganic phosphate (Pi) deprivation of Brassica nigra suspension cells or seedlings leads to a progressive increase in the alpha: beta-subunit ratio of the inorganic pyrophosphate (PPi)-dependent phosphofructokinase (PFP) and that this coincides with a marked enhancement in the enzyme's activity and sensitivity to its allosteric activator, fructose-2,6-bisphosphate (Fru-2,6-P2). To further investigate the effect of Pi nutrition on B. nigra PFP, the enzyme was purified and characterized from Pi-starved B. nigra suspension cell cultures. Polyacrylamide gel electrophoresis, immunoblot, and gel-filtration analyses of the final preparation indicated that this enzyme exists as a heterooctamer of approximately 500 kD and is composed of a 1:1 ratio of immunologically distinct alpha (66 kD) and beta (60 kD) subunits. The enzyme's alpha subunit was susceptible to partial proteolysis during purification, but this was prevented by the presence of chymostatin and leupeptin. In the presence and absence of 5 microM Fru-2,6-P2, the forward activity of PFP displayed pH optima of pH 6.8 and 7.6, respectively. Maximal activation of the forward and reverse reactions by Fru-2,6-P2 occurred at pH 6.8. The potent inhibition of the forward activity by Pi (concentration of inhibitor producing 50% inhibition of enzyme activity [I50] = 1.3 mM) was attributed to a marked Pi-dependent reduction in Fru-2,6-P2 binding. The reverse reaction was substrate-inhibited by Pi (I50 = 13 mM) and product-inhibited by PPi (I50 = 0.9 mM). The kinetic data are consistent with the hypothesis that PFP may function to bypass the ATP-dependent PFP in Pi-starved B. nigra. The importance of the Pi nutritional status to the regulation and predicted physiological function of PFP is emphasized.  相似文献   

4.
The classical, alpha/beta-subunit form (Q2) of green tomato pyrophosphate fructose-6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90), a cytosolic enzyme functional in carbohydrate metabolism, was rapidly inactivated on incubation with the oxidant 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Analysis of the DTNB-treated sample by a fluorescence procedure revealed that inactivation was accompanied by oxidation of sulfhydryl groups, primarily on the alpha-subunit. Phosphate metabolites--fructose 2,6-bisphosphate, fructose 1,6-bisphosphate, Pi, and PPi--protected against DTNB inactivation to varying degrees. The Km values for fructose 6-phosphate and PPi were not changed by DTNB treatment, but the capability for activation by fructose 2,6-bisphosphate was severely diminished. The oxidative inactivation of PFP was reversed by dithiothreitol, but not by monothiols (reduced glutathione or beta-mercaptoethanol). Reactivation was accompanied by restoration of the ability to undergo activation by fructose 2,6-bisphosphate. The findings suggest that sulfhydryl groups are essential for the activation of PFP by fructose 2,6-bisphosphate and raise the possibility that a reversible change in their redox status can take place under certain conditions. Evidence that this is the case was obtained with a preparation from wheat flour which, in the absence of an added oxidant, required reduction by a dithiol for activation by fructose 2,6-bisphosphate (dithiothreitol and reduced thioredoxin h).  相似文献   

5.
The inhibition of rabbit liver fructose 1,6-bisphosphatase (EC 3.1.3.11) by fructose 2,6-bisphosphate (Fru-2,6-P2) is shown to be competitive with the substrate, fructose 1,6-bisphosphate (Fru-1,6-P2), with Ki for Fru-2,6-P2 of approximately 0.5 μm. Binding of Fru-2,6-P2 to the catalytic site is confirmed by the fact that it protects this site against modification by pyridoxal phosphate. Inhibition by Fru-2,6-P2 is enhanced in the presence of a noninhibitory concentration (5 μm) of the allosteric inhibitor AMP and decreased by modification of the enzyme by limited proteolysis with subtilisin. Fru-2,6-P2, unlike the substrate Fru-1,6-P2, protects the enzyme against proteolysis by subtilisin or lysosomal proteinases.  相似文献   

6.
1H and 31P nuclear magnetic resonance was used to investigate the interaction of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) with bovine liver fructose-1,6-bisphosphatase. Mn2+ bound to fructose-1,6-bisphosphatase was used as a paramagnetic probe to map the active and AMP allosteric sites of fructose-1,6-bisphosphatase. Distances between enzyme-bound Mn2+ and the phosphorus atoms at C-6 of fructose-6-P and alpha-methyl-D-fructofuranoside 1,6-bisphosphate were identical, and the enzyme-Mn to phosphorus distance determined for the C-6 phosphorus atom of Fru-2,6-P2 was very similar to these values. Likewise, the enzyme-Mn to phosphorus distances for Pi, the C-1 phosphorus atom of alpha-methyl-D-fructofuranoside 1,6-bisphosphate, and the C-2 phosphorus atom of Fru-2,6-P2 agreed within 0.5 A. The distance between enzyme-bound Mn2+ and the phosphorus atom of AMP was significantly shorter than the distances obtained for any of the aforementioned ligands, but the presence of Fru-2,6-P2 caused the enzyme-Mn to phosphorus distance for AMP to lengthen markedly. NMR line broadening of AMP protons was studied at various temperatures. The dissociation rate constant was found to be greater than 20 s-1. It was concluded that Fru-2,6-P2 strongly affects the interaction of AMP with fructose-1,6-bisphosphatase and that the sugar most likely acts at the active site of the enzyme.  相似文献   

7.
The activity of highly purified pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP) from barley (Hordeum vulgare) leaves was studied under conditions where the catalyzed reaction was allowed to approach equilibrium. The activity of PFP was monitored by determining the changes in the levels of fructose-6-phosphate, orthophosphate, and fructose-1,6-bisphosphate (Fru-1,6-bisP). Under these conditions PFP activity was not dependent on activation by fructose-2,6-bisphosphate (Fru-2,6-bisP). Inclusion of aldolase in the reaction mixture temporarily restored the dependence of PFP on Fru-2,6-bisP. Alternatively, PFP was activated by Fru-1,6-bisP in the presence of aldolase. It is concluded that Fru-1,6-bisP is an allosteric activator of barley PFP, which can substitute for Fru-2,6-bisP as an activator. A significant activation was observed at a concentration of 5 to 25 [mu]M Fru-1,6-bisP, which demonstrates that the allosteric site of barley PFP has a very high affinity for Fru-1,6-bisP. The high affinity for Fru-1,6-bisP at the allosteric site suggests that the observed activation of PFP by Fru-1,6-bisP constitutes a previously unrecognized in vivo regulation mechanism.  相似文献   

8.
Van Praag E  Tzur A  Zehavi U  Goren R 《IUBMB life》2000,49(2):149-152
Shamouti phosphofructokinase (PFP) activation depends on the presence of fructose 2,6-bisphosphate (Fru-2,6-P2) in the glycolytic reaction. The effect of activation by Fru-2,6-P2 differs considerably, however, according to the buffer (pH 8.0) in which the reaction is performed: Ka = 2.77 +/- 0.3 nM in Hepes-NaOH and 7.75 +/- 1.49 nM in Tris-HCl. The presence of chloride ions (39 mM) in the Tris-HCl buffer inhibits PFP. Indeed, when using a Hepes-NaOH buffer and then adding 39 mM NaCl, Ka = 8.12 +/- 0.52 nM. The Ki for chloride ions is approximately 21.7 mM. In the gluconeogenic reaction, Shamouti PFP generally showed a high endogenous activity. Addition of Fru-2,6-P2 did not modify the velocity and the Vmax of the enzyme; however, its presence increased the affinity of the enzyme for Fru-1,6-P2 from 200 +/- 15.6 microM in absence of Fru-2,6-P2 to 89 +/- 10.3 microM in its presence (10 microM). In the presence of chloride (39 mM), the affinity for the substrate decreased with K(m) = 150 +/- 14 microM. The calculated Ki for chloride ions equals 56.9 mM. In both the glycolytic and the gluconeogenic reactions, Vmax is not affected; therefore, the inhibition mode of chloride is competitive.  相似文献   

9.
H J Green  J Cadefau  D Pette 《FEBS letters》1991,282(1):107-109
Glucose 1,6-bisphosphate (Glc-1,6-P2) and fructose 2,6-bisphosphate (Fru-2,6-P2) concentrations display pronounced increases in rabbit fast-twitch muscle during chronic low-frequency stimulation. These increases are first seen after stimulation periods exceeding 3 h and reach maxima after 12-24 h of stimulation (approximately 3-fold for Glc-1,6-P2 and 5-fold for Fru-2,6-P2). Both metabolites regress to normal values after stimulation periods longer than 4 days. The fact that their increases coincide with the replenishment of glycogen after its initial depletion, could point to a role of Glc-1,6-P2 and Fru-2,6-P2 in glycogen metabolism.  相似文献   

10.
Botha AM  Botha FC 《Plant physiology》1993,101(4):1385-1390
During germination of Citrullus lanatus, pyrophosphate-dependent phosphofructokinase (PFP) activity is induced. The peak of PFP activity coincides with the maximum gluconeogenic flux and high fructose-2,6-bisphosphate (Fru-2,6-P2) concentrations. Determination of cytosolic fructose-1,6 bisphosphatase (FBPase) activity in crude extracts is unreliable because of the high PFP activity. The FBPase activity, after correction for the contaminating PFP, is only one-third of the PFP activity. Purified cytosolic FBPase is inhibited by Fru-2,6-P2. The low cytosolic FBPase activity and high Fru-2,6-P2 most probably result in inadequate in vivo activity to catalyze the observed gluconeogenic flux. The total PFP activity is sufficient to catalyze the required carbon flux.  相似文献   

11.
Pyrphosphate-dependent phosphofructokinase (PFP) was purified to electrophoretic homogeneity from illuminated pineapple (Ananas comosus) leaves. The purified enzyme consists of a single subunit of 61.5 kD that is immunologically related to the potato tuber PFP [beta] subunit. The native form of PFP likely consists of a homodimer of 97.2 kD, as determined by gel filtration. PFP's glycolytic activity was strongly dependent on pH, displaying a maximum at pH 7.7 to 7.9. Gluconeogenic activity was relatively constant between pH 6.7 and 8.7. Activation by Fru-2,6-bisphosphate (Fru-2,6-P2) was dependent on assay pH. In the glycolytic direction, it activated about 10-fold at pH 6.7, but only 2-fold at pH 7.7. The gluconeogenic reaction was only weakly affected by Fru-2,6-P2. The true substrates for the PFP forward and reverse reactions were Fru-6-phosphate and Mg-pyrophosphate, and Fru-1,6-P2, orthophosphate, and Mg2+, respectively. The results suggest that pineapple PFP displays regulatory properties consistent with a pH-based regulation of its glycolytic activity, in which a decrease in cytosolic pH caused by nocturnal acidification during Crassulacean acid metabolism, which could curtail its activity, is compensated by a parallel increase in its sensitivity to Fru-2,6-P2. It is also evident that the [beta] subunit alone is sufficient to confer PFP with a high catalytic rate and the regulatory properties associated with activation by Fru-2,6-P2.  相似文献   

12.
Turner WL  Plaxton WC 《Planta》2003,217(1):113-121
Pyrophosphate-dependent phosphofructokinase (PFP; EC 2.7.1.90) and two isoforms of ATP-dependent phosphofructokinase (PFK I and PFK II; EC 2.7.1.11) from ripened banana ( Musa cavendishii L. cv. Cavendish) fruits were resolved via hydrophobic interaction fast protein liquid chromatography (FPLC), and further purified using anion-exchange and gel filtration FPLC. PFP was purified 1,158-fold to a final specific activity of 13.9 micromol fructose 1,6-bisphosphate produced (mg protein)(-1) x min(-1). Gel filtration FPLC and immunoblot analyses indicated that this PFP exists as a 490-kDa heterooctomer composed of equal amounts of 66- (alpha) and 60-kDa (beta) subunits. PFP displayed hyperbolic saturation kinetics for fructose 6-phosphate (Fru 6-P), PPi, fructose 1,6-bisphosphate, and Pi ( K(m) values = 32, 9.7, 25, and 410 microM, respectively) in the presence of saturating (5 microM) fructose 2,6-bisphosphate, which elicited a 24-fold enhancement of glycolytic PFP activity ( K(a)=8 nM). PFK I and PFK II were each purified about 350-fold to final specific activities of 5.5-6.0 micromol fructose 1,6-bisphosphate produced (mg protein)(-1) x min(-1). Analytical gel filtration yielded respective native molecular masses of 210 and 160 kDa for PFK I and PFK II. Several properties of PFK I and PFK II were consistent with their respective designation as plastid and cytosolic PFK isozymes. PFK I and PFK II exhibited: (i) pH optima of 8.0 and 7.3, respectively; (ii) hyperbolic saturation kinetics for ATP ( K(m)=34 and 21 microM, respectively); and (iii) sigmoidal saturation kinetics for Fru 6-P ( S0.5=540 and 90 microM, respectively). Allosteric effects of phospho enolpyruvate (PEP) and Pi on the activities of PFP, PFK I, and PFK II were characterized. Increasing concentrations of PEP or Pi progressively disrupted fructose 2,6-bisphosphate binding by PFP. PEP potently inhibited PFK I and to a lesser extent PFK II ( I50=2.3 and 900 microM, respectively), while Pi activated PFK I by reducing its sensitivity to PEP inhibition. Our results are consistent with: (i) the respiratory climacteric being regulated by fine (allosteric) control of pre-existing enzymes; and (ii) primary and secondary glycolytic flux control being exerted at the levels of PEP and Fru 6-P metabolism, respectively.  相似文献   

13.
The glycolytic reaction of grapefruit PPi-dependent phosphofructokinase (PFP) depends on the presence of Fru-2,6-P2 (Ka=6.7 nM). This molecule was further demonstrated in grapefruit juice sac cells. Citrate, -ketoglutarate and isocitrate competitively inhibited the binding of Fru-2,6-P2 to PFP. The affinity for Fru-6-P (Km=159 μM) and PPi (Km=33 μM) were not affected by the addition of these molecules. In the gluconeogenic reaction, the presence of Fru-2,6-P2 did not affect the Km of Fru-1,6-P2 (61 μM) in contrast to orange fruit PFP. These results led to the building of a computer model of PFP, based on the known structure of Bacillus stearothermophilus ATP-dependent phosphofructokinase (ATP-PFK). The results show that catalysis of Fru-6-P in the chain is most unlikely, due to amino-acid substitutions and that Fru-2,6-P2 can bind between the and β subunits.  相似文献   

14.
The ability for various ligands to modulate the binding of fructose 1,6-bisphosphate (Fru-1,6-P2) with purified rat liver pyruvate kinase was examined. Binding of Fru-1,6-P2 with pyruvate kinase exhibits positive cooperativity, with maximum binding of 4 mol Fru-1,6-P2 per enzyme tetramer. The Hill coefficient (nH), and the concentration of Fru-1,6-P2 giving half-maximal binding [FBP]1/2, are influenced by several factors. In 150 mM Tris-HCl, 70 mM KCl, 11 mM MgSO4 at pH 7.4, [FBP]1/2 is 2.6 microM and nH is 2.7. Phosphoenolpyruvate and pyruvate enhance the binding of Fru-1,6-P2 by decreasing [FBP]1/2. ADP and ATP alone had little influence on Fru-1,6-P2 binding. However, the nucleotides antagonize the response elicited by pyruvate or phosphoenolpyruvate, suggesting that the competent enzyme substrate complex does not favor Fru-1,6-P2 binding. Phosphorylation of pyruvate kinase or the inclusion of alanine in the medium, two actions which inhibit the enzyme activity, result in diminished binding of low concentrations of Fru-1,6-P2 with the enzyme. These effectors do not alter the maximum binding capacity of the enzyme but rather they raise the concentrations of Fru-1,6-P2 needed for maximum binding. Phosphorylation also decreased the nH for Fru-1,6-P2 binding from 2.7 to 1.7. Pyruvate kinase activity is dependent on a divalent metal ion. Substituting Mn2+ for Mg2+ results in a 60% decrease in the maximum catalytic activity for the enzyme and decreases the concentration of phosphoenolpyruvate needed for half-maximal activity from 1 to 0.1 mM. As a consequence, Mn2+ stimulates activity at subsaturating concentrations of phosphoenolpyruvate, but inhibits at saturating concentrations of the substrate or in the presence of Fru-1,6-P2. Both Mg2+ and Mn2+ diminish binding of low concentrations of Fru-1,6-P2; however, the concentrations of the metal ions needed to influence Fru-1,6-P2 binding exceed those needed to support catalytic activity.  相似文献   

15.
PP(i)-dependent phosphofructokinase (PFP) activity, measured in the forward direction, increased approximately 19-fold when suspension cell cultures of black mustard (Brassica nigra) were subjected to 18 days of P(i) deprivation. Fructose 2,6-bisphosphate (2 microM) elicited a 10-fold activation of PFP from P(i)-deficient cells, compared to only a 2-fold activation of the enzyme from nutrient-sufficient cells. Also, PFP from P(i)-starved cells exhibited a greater affinity for the activator (Ka = 0.09 microM) than the enzyme from nutrient-sufficient cells (Ka = 0.32 microM). Western blots of extracts from P(i)-deficient cells were probed with rabbit anti-(potato tuber PFP) immune serum and revealed equal intensity staining immunoreactive polypeptides of M(r) 66,000 (alpha-subunit) and 60,000 (beta-subunit) that co-migrated with the alpha- and beta-subunits of homogeneous potato tuber PFP. By contrast, only the M(r) 60,000 beta-subunit was observed on immunoblots of extracts prepared from nutrient-sufficient cells. Quantification of immunoblots indicated that in black mustard cells experiencing transition from P(i) sufficiency to deficiency or vice versa, the relative amount of immunoreactive alpha-subunit correlated with the degree of activation of PFP by fructose 2,6-bisphosphate. These observations provide additional evidence that (i) plant PFP is an adaptive enzyme that may function in glycolysis during P(i) deprivation, and (ii) the alpha-subunit acts as a regulatory protein in controlling the catalytic activity of the beta-subunit and its regulation by fructose 2,6-bisphosphate.  相似文献   

16.
Theodorou ME  Kruger NJ 《Planta》2001,213(1):147-157
A major problem in defining the physiological role of pyrophosphate:fructose 6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) is the 1,000-fold discrepancy between the apparent affinity of PFP for its activator, fructose 2,6-bisphosphate (Fru-2,6-P2), determined under optimum conditions in vitro and the estimated concentration of this signal metabolite in vivo. The aim of this study was to investigate the combined influence of metabolic intermediates and inorganic phosphate (Pi) on the activation of PFP by Fru-2,6-P2. The enzyme was purified to near-homogeneity from leaves of spinach (Spinacia oleracea L.). Under optimal in vitro assay conditions, the activation constant (K a) of spinach leaf PFP for Fru-2,6-P2 in the glycolytic direction was 15.8 nM. However, in the presence of physiological concentrations of fructose 6-phosphate, inorganic pyrophosphate (PPi), 3-phosphoglycerate (3PGA), phosphoenolpyruvate (PEP), ATP and Pi the K a of spinach leaf PFP for Fru-2,6-P2 was up to 2000-fold greater than that measured in the optimised assay and V max decreased by up to 62%. Similar effects were observed with PFP purified from potato (Solanum tuberosum L.) tubers. Cytosolic metabolites and Pi also influenced the response of PFP to activation by its substrate fructose 1,6-bisphosphate (Fru-1,6-P2). When assayed under optimum conditions in the gluconeogenic direction, the K a of spinach leaf PFP for Fru-1,6-P2 was approximately 50 μM. Physiological concentrations of PPi, 3PGA, PEP, ATP and Pi increased K a up to 25-fold, and decreased V max by over 65%. From these results it was concluded that physiological concentrations of metabolites and Pi increase the K a of PFP for Fru-2,6-P2 to values approaching the concentration of the activator in vivo. Hence, measured changes in cytosolic Fru-2,6-P2 levels could appreciably alter the activation state of PFP in vivo. Moreover, the same levels of metabolites increase the K a of PFP for Fru-1,6-P2 to an extent that activation of PFP by this compound is unlikely to be physiologically relevant. Received: 21 July 2000 / Accepted: 15 September 2000  相似文献   

17.
Antibodies against the alpha (Mr 67,000) and beta (Mr 60,000) subunits of wheat seedling Fru-2,6-P2-stimulated pyrophosphate-dependent 6-phosphofructo-1-phosphotransferase (PFP) were used to probe the subunit structures of several partially purified plant PFPs after tryptic digestion. Antisera to the alpha and beta subunits of wheat seedling PFP cross-reacted with the corresponding alpha and beta subunits of PFP preparations from wheat germ, potato tubers, and lettuce leaves. With the mung bean PFP, both antisera reacted with a protein band of Mr 60,000. A protein band corresponding to the Mr 67,000 alpha subunit was not detected in the mung bean PFP preparation. Tryptic digestion of wheat seedling and potato tuber PFPs resulted in the preferential cleavage of the alpha subunit. The trypsinized PFP retained most of its Fru-2,6-P2-stimulated activity but not its basal activity. The proteolyzed enzyme also exhibited a 2-fold increase in Ka for Fru-2,6-P2. Studies with the mung bean enzyme revealed that the anti-alpha immunoreactive component was more sensitive to trypsinization than the anti-beta immunoreactive component of the Mr 60,000 protein band. Thus, the Mr 60,000 protein band of the mung bean PFP appears to be heterogeneous and contains both alpha and beta-like proteins. The above observations indicate that the alpha and beta subunits of PFP are two distinct polypeptides and that alpha acts as a regulatory protein in regulating both the catalytic activity and the Fru-2,6-P2-binding affinity of the beta subunit.  相似文献   

18.
The allosteric effect of fructose 1,6-bisphosphate (Fru-1,6-P2) on L-lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) from Thermus caldophilus GK24 was studied by means of 1H NMR analyses. The conformation of NAD+ as bound to the T. caldophilus enzyme was elucidated by analyses of the transferred nuclear Overhauser effects (TRNOE), in the presence and the absence of the allosteric effector, Fru-1,6-P2. Upon binding of Fru-1,6-P2 to the enzyme, the ribose ring of the adenosine moiety of NAD+ is converted from the C2'-endo form to the C3'-endo form. This C3'-endo form of the adenosine moiety is similar to that of NAD+ as bound to nonallosteric vertebrate enzymes. However, the anti conformation of the adenine-ribose bond of NAD+ as bound to the T. caldophilus enzyme is not affected by the binding of Fru-1,6-P2. In contrast, the syn conformation of the nicotinamide-ribose bond is converted to the anti form on the binding of Fru-1,6-P2, while the ribose ring remains in the C3'-endo form as found in the case of a nonallosteric enzyme. Such a conformational change of enzyme-bound NAD+ as found on TRNOE analysis is essentially involved in the allosteric regulation of the T. caldophilus enzyme by Fru-1,6-P2.  相似文献   

19.
The activity of pyruvate kinase, subtype M2 (PKM2), is known to be increased by fructose 1,6-bisphosphate (Fru-1,6-P2), one of the metabolites in the glycolytic pathway. Recently, we have shown that in vitro, Fru-1,6-P2 activated the association of monomer to form the tetrameric PKM2. To ascertain whether this mode of regulation also occurs in vivo, we prepared monomer-specific monoclonal antibody and quantified the monomer formation in situ in cultured cells by immunocytochemistry. The intracellular Fru-1,6-P2 was manipulated by the glucose concentration in the media. At the physiological concentration of glucose (4-6 mM), 30-35% of PK existed as a monomer. However, PKM2 was dissociated into monomer within minutes after cells were deprived of glucose. The maximal level of monomer was detected after 1 h at 37 degrees C. Monomer was rapidly (within minutes) converted to tetramer after addition of glucose. Furthermore, when cells cultured in 10 mM of glucose were treated with cytochalasin B, an inhibitor of the glucose transporter, a maximal level of monomer was detected within 20-30 min. Determination of Fru-1,6-P2 indicated that its intracellular concentration decreased concomitantly with the reduction in glucose concentration in the medium. These results indicate that monomer-tetramer inter-conversion is a major in vivo cellular regulatory mechanism in response to changes in the extracellular glucose concentration via Fru-1,6-P2.  相似文献   

20.
The sensitivity of the Mg(II)-dependent activity of rabbit liver fructose 1,6-bisphosphatase (FBPase, EC 3.1.3.11) to inhibition by fructose 2,6-bisphosphate (Fru-2,6-P2) was enhanced by EDTA and diminished to negligible levels by 0.5-2 microM Zn(II) added as another FBPase inhibitor. Fru-2,6-P2 was more efficient in the presence of the synergistic effector AMP: still, the Fru-2,6-P2 concentration inhibiting 50% changed from 3 microM (with EDTA) to higher than 50 microM (with Zn(II]. On the other hand, the Zn(II)-dependent FBPase activity was inhibited by Fru-2,6-P2 to a much lesser extent than the Mg(II)-dependent activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号