首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to develop an effective CO2 mitigation process using microalgae for potential industrial application, the growth and physiological activity of Chlorella vulgaris in photobioreactor cultures were studied. C. vulgaris was grown at two CO2 concentrations (2 and 13% of CO2 v/v) and at three incident light intensities (50, 120 and 180 μmol m?2 s?1) for 9 days. The measured specific growth rate was similar under all conditions tested but an increase in light intensity and CO2 concentration affected the biomass and cell concentrations. Although carbon limitation was observed at 2% CO2, similar cellular composition was measured in both conditions. Light limitation induced a net change in the growth behavior of C. vulgaris. Nitrogen limitation seemed to decrease the nitrogen quota of the cells and rise the intracellular carbon:nitrogen ratio. Exopolysaccharide production per cell appeared to be affected by light intensity. In order to avoid underestimation of the CO2 biofixation rate of the microalgae, exopolysaccharide production was taken into account. The maximum CO2 removal rate (0.98 g CO2 L?1 d?1) and the highest biomass concentration (4.14 g DW L?1) were determined at 13% (v/v) CO2 and 180 μmol m?2 s?1. Our results show that C. vulgaris has a real potential for industrial CO2 remediation.  相似文献   

2.
Trees growing in natural systems undergo seasonal changes in environmental factors that generate seasonal differences in net photosynthetic rates. To examine how seasonal changes in the environment affect the response of net photosynthetic rates to elevated CO2, we grew Pinus taeda L. seedlings for three growing seasons in open-top chambers continuously maintained at either ambient or ambient + 30 Pa CO2. Seedlings were grown in the ground, under natural conditions of light, temperature nd nutrient and water availability. Photosynthetic capacity was measured bimonthly using net photosynthetic rate vs. intercellular CO2 partial pressure (A-Ci) curves. Maximum Rubisco activity (Vcmax) and ribulose 1,5-bisphosphate regeneration capacity mediated by electron transport (Jmax) and phosphate regeneration (PiRC) were calculated from A-Ci curves using a biochemically based model. Rubisco activity, activation state and content, and leaf carbohydrate, chlorophyll and nitrogen concentrations were measured concurrently with photosynthesis measurements. This paper presents results from the second and third years of treatment. Mean leaf nitrogen concentrations ranged from 13.7 to 23.8 mg g?1, indicating that seedlings were not nitrogen deficient. Relative to ambient CO2 seedlings, elevated CO2 increased light-saturated net photosynthetic rates 60–110% during the summer, but < 30% during the winter. A relatively strong correlation between leaf temperature and the relative response of net photosynthetic rates to elevated CO2 suggests a strong effect of leaf temperature. During the third growing season, elevated CO2 reduced Rubisco activity 30% relative to ambient CO2 seedlings, nearly completely balancing Rubisco and RuBP-regeneration regulation of photosynthesis. However, reductions in Rubisco activity did not eliminate the seasonal pattern in the relative response of net photosynthetic rates to elevated CO2. These results indicate that seasonal differences in the relative response of net photosynthetic rates to elevated CO2 are likely to occur in natural systems.  相似文献   

3.

Key message

The black locust is adapted to elevated [CO 2 ] through changes in nitrogen allocation characteristics in leaves.

Abstract

The black locust (Robinia pseudoacacia L.) is an invasive woody legume within Japan. This prolific species has a high photosynthetic rate and growth rate, and undergoes symbiosis with N2-fixing micro-organisms. To determine the effect of elevated CO2 concentration [CO2] on its photosynthetic characteristics, we studied the chlorophyll (Chl) and leaf nitrogen (N) content, and the leaf structure and N allocation patterns in the leaves and acetylene reduction activity after four growing seasons, in R. pseudoacacia. Our specimens were grown at ambient [CO2] (370 μmol mol?1) and at elevated [CO2] (500 μmol mol?1), using a free air CO2 enrichment (FACE) system. Net photosynthetic rate at growth [CO2] (A growth) and acetylene reduction activity were significantly higher, but maximum carboxylation rate of RuBisCo (V cmax), maximum rate of electron transport driving RUBP regeneration (J max), net photosynthetic rate under enhanced CO2 concentration and light saturation (A max), the N concentration in leaf, and in leaf mass per unit area (LMA) and ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCo) content were significantly lower grown at elevated [CO2] than at ambient [CO2]. We also found that RuBisCo/N were less at elevated [CO2], whereas Chl/N increased significantly. Allocation characteristics from N in leaves to photosynthetic proteins, NL (Light-harvesting complex: LHC, photosystem I and II: PSI and PSII) and other proteins also changed. When R. pseudoacacia was grown at elevated [CO2], the N allocation to RuBisCo (NR) decreased to a greater extent but NL and N remaining increased relative to specimens grown at ambient [CO2]. We suggest that N remobilization from RuBisCo is more efficient than from proteins of electron transport (NE), and from NL. These physiological responses of the black locust are significant as being an adaptation strategy to global environmental changes.
  相似文献   

4.
We carried out a factorial experiment to explore the effect of doubled CO2 concentration and a 3 °C temperature increase on the development of a complete generation of the beetles Octotoma championi Baly and O. scabripennis Guérin‐Méneville (Coleoptera: Chrysomelidae). These species are biological control agents of Lantana camara L. (Verbenaceae), with a leaf‐mining larval phase and free‐living, leaf‐chewing adults. Plants grown at elevated CO2 had enhanced above‐ground biomass, thicker leaves, reduced nitrogen concentration, and increased C:N ratios. Under the high temperature treatment, plants grown at ambient CO2 suffered wilting and premature leaf loss, despite daily watering; this effect was ameliorated at elevated CO2. The wilting of plants in the ambient CO2/high temperature treatment reduced the emergence success of the beetles, particularly O. championi. Development time was accelerated by approximately 10–13 days at the higher temperature, but was not affected by CO2. Neither CO2 nor temperature affected adult beetle weight. Consumption rates of free‐living beetles were not affected by either CO2 or temperature. By contrast, in the short‐term trials using excised foliage, beetles given no choice between ambient and elevated CO2‐grown foliage, consumed more from ambient plants. When beetles were offered a choice between foliage grown at the two CO2 levels, O. championi did not display a significant preference but O. scabripennis consumed more ambient CO2‐grown foliage when feeding at the lower temperature. This study indicates that under future conditions of higher temperatures, amelioration of water stress in host plants growing in elevated CO2 may benefit some endophagous insects by reducing premature leaf loss. Under some circumstances, this benefit may outweigh the deleterious effects of lower leaf nitrogen. Our results also indicate that foliage consumption under elevated CO2 by mobile, adult insects on whole plants may not be significantly increased, as was previously indicated by short‐term experiments using excised foliage.  相似文献   

5.
If long‐term responses of photosynthesis and leaf diffusive conductance to rising atmospheric carbon dioxide (CO2) levels are similar or predictably different among species, functional types, and ecosystem types, general global models of elevated CO2 effects can effectively be developed. To address this issue we measured gas exchange rates of 13 perennial grassland species from four functional groups across 11 years of long‐term free‐air CO2 enrichment (eCO2, +180 ppm above ambient CO2) in the BioCON experiment in Minnesota, USA. Eleven years of eCO2 produced consistent but modest increases in leaf net photosynthetic rates of 10% on average compared with plants grown at ambient CO2 concentrations across the 13 species. This eCO2‐induced enhancement did not depend on soil N treatment, is much less than the average across other longer‐term studies, and represents strong acclimation (i.e. downregulation) as it is also much less than the instantaneous response to eCO2. The legume and C3 nonlegume forb species were the most responsive among the functional groups (+13% in each), the C4 grasses the least responsive (+4%), and C3 grasses intermediate in their photosynthetic response to eCO2 across years (+9%). Leaf stomatal conductance and nitrogen content declined comparably across species in eCO2 compared with ambient CO2 and to degrees corresponding to results from other studies. The significant acclimation of photosynthesis is explained in part by those eCO2‐induced decreases in leaf N content and stomatal conductance that reduce leaf photosynthetic capacity in plants grown under elevated compared with ambient CO2 concentrations. Results of this study, probably the longest‐term with the most species, suggest that carbon cycle models that assume and thereby simulate long‐lived strong eCO2 stimulation of photosynthesis (e.g.> 25%) for all of Earth's terrestrial ecosystems should be viewed with a great deal of caution.  相似文献   

6.
Gielen  B.  Jach  M.E.  Ceulemans  R. 《Photosynthetica》2000,38(1):13-21
Six-year-old Scots pine (Pinus sylvestris L.) seedlings were grown in open top chambers (OTCs) at ambient (AC) or elevated (ambient + 400 µmol mol–1; EC) CO2 concentration for three years (1996–1998). Chlorophyll (Chl) a fluorescence of current and one-year-old needles was measured in the field at two-weekly intervals in the period July–October 1998. In addition, Chl, carbon (C), and nitrogen (N) concentrations in both needle age classes were determined monthly during the same period. Chl fluorescence parameters were not significantly affected by EC, suggesting there was no response of the light reactions and the photochemical efficiency of photosystem 2. Chl concentrations were not significantly different but a reduced N concentration was observed in needles of EC treatment. Significant differences between needle age classes were observed for all parameters, but were most apparent under EC and toward the end of the growing season, possibly due to an acclimation process. As a result, significant interactions between CO2 treatment, needle age class, and season were found. This study emphasizes the importance of repeated measures including different leaf/needle age classes to assess the photosynthetic response of trees under EC.  相似文献   

7.
The STAY‐GREEN (SGR) gene encodes Mg‐dechelatase which catalyzes the conversion of chlorophyll (Chl) a to pheophytin (Pheo) a. This reaction is the first and most important regulatory step in the Chl degradation pathway. Conversely, Pheo a is an indispensable molecule in photosystem (PS) II, suggesting the involvement of SGR in the formation of PSII. To investigate the physiological functions of SGR, we isolated Chlamydomonas sgr mutants by screening an insertion‐mutant library. The sgr mutants had reduced maximum quantum efficiency of PSII (Fv/Fm) and reduced Pheo a levels. These phenotypes were complemented by the introduction of the Chlamydomonas SGR gene. Blue Native polyacrylamide gel electrophoresis and immunoblotting analysis showed that although PSII levels were reduced in the sgr mutants, PSI and light‐harvesting Chl a/b complex levels were unaffected. Under nitrogen starvation conditions, Chl degradation proceeded in the sgr mutants as in the wild type, indicating that ChlamydomonasSGR is not required for Chl degradation and primarily contributes to the formation of PSII. In contrast, in the Arabidopsis sgr triple mutant (sgr1 sgr2 sgrL), which completely lacks SGR activity, PSII was synthesized normally. These results suggest that the Arabidopsis SGR participates in Chl degradation while the ChlamydomonasSGR participates in PSII formation despite having the same catalytic property.  相似文献   

8.
The effect of elevated CO2 on the demography of the arachnid species Tetranychus urticae feeding on Phaseolus vulgaris plants was analysed. This class of herbivores (Arachnida) and its feeding guild (cell content feeders) are under-represented in studies of the combined effects of herbivory and CO2. The growth of bean was strongly stimulated by elevated CO2. The number of leaves on lateral stems and of flowers increased but pod weight decreased. Leaf nitrogen content was 25% lower at elevated CO2 due to an increase in non-structural sugar concentration. Leaf water content was lower at elevated CO2 while leaf-specific mass and epidermis thickness were higher. Females of the mite raised at ambient or elevated CO2, but all fed with leaves grown at ambient CO2, had similar progenies. When females were raised on plants grown at elevated CO2, the numbers of their progeny were reduced by 34% and 49% in the first and second generation respectively. Later stages of development were more reduced in elevated CO2, suggesting that both fecundity and rate of development were affected. This study suggests that the abundance of T. urticae, and consequently the damage to the many crops it infests, might decrease in a future elevated-CO2 environment. Received: 8 May 1999 / Accepted: 4 November 1999  相似文献   

9.
The effects of CO2 enrichment and soil nutrient status on tissue quality were investigated and related to the potential effect on growth and decomposition. Two California annuals, Avena fatua and Plantago erecta, were grown at ambient and ambient plus 35 Pa atmospheric CO2 in nutrient unamended and amended serpentine soil. Elevated CO2 led to significantly increased Avena shoot nitrogen concentrations in the nutrient amended treatment. It also led to decreased lignin concentrations in Avena roots in both nutrient treatments, and in Plantago shoots and roots with nutrient addition. Concentrations of total nonstructural carbohydrate (TNC) and carbon did not change with elevated CO2 in either species. As a consequence of increased biomass accumulation, increased CO2 led to larger total pools of TNC, lignin, total carbon, and total nitrogen in Avena with nutrient additions. Doubling CO2 had no significant effect on Plantago. Given the limited changes in the compounds related to decomposibility and plant growth, effects of increased atmospheric CO2 mediated through tissue composition on Avena and Plantago are likely to be minor and depend on site fertility. This study suggests that other factors such as litter moisture, whether or not litter is on the ground, and biomass allocation among roots and shoots, are likely to be more important in this California grassland ecosystem. CO2 could influence those directly as well as indirectly.  相似文献   

10.
Plant growth and adaptation to cold and freezing temperatures in a CO2-enriched atmosphere have received little attention despite the predicted effects of elevated CO2 on plant distribution and productivity. Norway spruce [Picea abies (L.) Karst.] seedlings from latitudinally distinct seed sources (66°N and 60°N) were grown for one simulated growth season under controlled conditions in an atmosphere enriched in CO2 (70 Pa) and at ambient CO2 (40 Pa), combined factorially with low (3.6 mM) or high (15.7 mM) concentrations of nitrogen fertilization. There was a clear difference between the two provenances in height growth, in the timing of bud set, and in freezing tolerance. Nitrogen fertilization increased height growth in both provenances, while CO2 enrichment stimulated height growth only in the southern provenance. We found no significant effects of elevated CO2 or nitrogen fertilization on the timing of bud set. During cold acclimation, freezing tolerance increased from –10°C to –35°C, and there was a marked increase in all soluble sugars except inositol. Elevated CO2 in combination with high nitrogen led to a slight increased freezing tolerance in both provenances during the early stages of cold acclimation. However, towards the end of cold acclimation, elevated CO2 and high nitrogen led to reduced freezing tolerance in the southern provenance, while elevated CO2 and low nitrogen reduced freezing tolerance in the northern provenance. These results suggest that CO2 enrichment influences the development of freezing tolerance, and that these responses differ with available nitrogen and between provenances.  相似文献   

11.
Matthias W. Diemer 《Oecologia》1994,98(3-4):429-435
Ecosystem net CO2 uptake, evapotranspiration (ET) and night-time CO2 efflux were measured in an alpine grassland dominated by Carex curvula, treated with doubled ambient partial pressure of CO2 via open-top chambers. One quarter of the plots were treated with mineral nutrients to simulate the effect of lowland nitrogen deposition rates. Depending upon fertilizer supply, ecosystem net CO2 uptake per ground area in full sunlight (NCEmax) was 41–81% higher in open-top chambers supplied with doubled ambient partial pressure (p a) of CO2 than in plots receiving ambient CO2. Short-term reversals of the CO2 level suggest that the extent of downward adjustment of canopy photosynthesis under elevated CO2 was 30–40%. ET tended to decline, while water use efficiency (WUE), expressed as the NCEmax:ET ratio, increased more than twofold under elevated CO2. Night-time ecosystem CO2 efflux did not respond to changes in CO2 p a. NCEmax and night-time CO2 efflux were more responsive to mineral fertilizer than the doubling of CO2. This suggests that in these alpine plant communities, atmospheric nutrient input may induce equal or greater effects on gas exchange than increased CO2.  相似文献   

12.
The aim of this work was to characterize the phot1 mutant of rice during early seedling growth in various light conditions. We isolated the rice T-DNA insertion mutant phot1a-1 and compared it to the Tos17 insertion mutant phot1a-2. When phot1a mutants were grown under WL (100) and BL (40 μmol m−2 s−1), they demonstrated a considerable reduction in photosynthetic capacity, which included decreased leaf CO2 uptake and plant growth. Pigment analysis showed no significant difference between wild-type and mutants in the Chl a:b ratios, whereas in the latter, total concentration was reduced (a 2-fold decrease). Carotenoid contents of the mutants were also decreased considerably, implying the involvement of phot1a in pigment degradation. Deletion of phot1a showed higher contents of H2O2 in leaves. Chloroplastic APX and SOD activities were lower in the mutants whereas the activities of cytosolic enzymes were increased. Immunoblotting indicated reduced accumulation of photosystem proteins (D1, D2, CP43, Lhca2, and PsaC) relative to the other light-harvesting complexes in the mutant. We conclude that the defect of Os Phot1a affects degradation of chlorophylls and carotenoids, and under photosynthetically active photon fluxes, mutation of phot1a results in loss of photosynthetic capacity owing to the damage of photosystems caused by elevated H2O2 accumulation, leading to a reduction in plant growth. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
The long‐term effects of elevated (ambient plus 350 μmol mol?1) atmospheric CO2 concentration (Ca) on the leaf senescence of Quercus myrtifolia Willd was studied in a scrub‐oak community during the transition from autumn (December 1997) to spring (April 1998). Plants were grown in large open‐top chambers at the Smithsonian CO2 Research Site, Merritt Island Wildlife Refuge, Cape Canaveral, Florida. Chlorophyll (a + b) concentration, Rubisco activity and N concentration decreased by 75%, 82%, and 52%, respectively, from December (1997) to April (1998) in the leaves grown at ambient Ca. In contrast, the leaves of plants grown at elevated Ca showed no significant decrease in chlorophyll (a + b) concentration or Rubisco activity, and only a 25% reduction in nitrogen. These results indicate that leaf senescence was delayed during this period at elevated Ca. Delayed leaf senescence in elevated Ca had important consequences for leaf photosynthesis. In elevated Ca the net photosynthetic rate of leaves that flushed in Spring 1997 (last year's leaves) and were 13 months old was not different from fully‐expanded leaves that flushed in 1998, and were approximately 1 month old (current year's leaves). In ambient Ca the net photosynthetic rate of last year's leaves was 54% lower than for current year's leaves. When leaves were fully senesced, nitrogen concentration decreased to about 40% of the concentration in non‐senesced leaves, in both CO2 treatments. In April, net photosynthesis was 97% greater in leaves grown in elevated Ca than in those grown at ambient. During the period when elevated Ca delayed leaf senescence, more leaves operating at higher photosynthetic rate would allow the ecosystem dominated by Q. myrtifolia to gain more carbon at elevated Ca than at ambient Ca.  相似文献   

14.
The role of photorespiration in the foliar assimilation of nitrate (NO3) and carbon dioxide (CO2) was investigated by measuring net CO2 assimilation, net oxygen (O2) evolution, and chlorophyll fluorescence in tomato leaves (Lycopersicon esculentum). The plants were grown under ambient CO2 with ammonium nitrate (NH4NO3) as the nitrogen source, and then exposed to a CO2 concentration of either 360 or 700 µmol mol?1, an O2 concentration of 21 or 2%, and either NO3 or NH4+ as the sole nitrogen source. The elevated CO2 concentration stimulated net CO2 assimilation under 21% O2 for both nitrogen treatments, but not under 2% O2. Under ambient CO2 and O2 conditions (i.e. 360 µmol mol?1 CO2, 21% O2), plants that received NO3 had 11–13% higher rates of net O2 evolution and electron transport rate (estimated from chlorophyll fluorescence) than plants that received NH4+. Differences in net O2 evolution and electron transport rate due to the nitrogen source were not observed at the elevated CO2 concentration for the 21% O2 treatment or at either CO2 level for the 2% O2 treatment. The assimilatory quotient (AQ) from gas exchange, the ratio of net CO2 assimilation to net O2 evolution, indicated more NO3 assimilation under ambient CO2 and O2 conditions than under the other treatments. When the AQ was derived from gross O2 evolution rates estimated from chlorophyll fluorescence, no differences could be detected between the nitrogen treatments. The results suggest that short‐term exposure to elevated atmospheric CO2 decreases NO3 assimilation in tomato, and that photorespiration may help to support NO3 assimilation.  相似文献   

15.
Net CO2 exchange was monitored through a dark-light-dark transition, under 2% and 21% O2 in the presence and absence of CO2, in Chlamydomonas reinhardtii wild type and the high-CO2-requiring mutant ca-1-12-1C. Upon illumination at 350 l/l CO2, ca-1-12-1C cell exhibited a large decrease in net CO2 uptake following an initial surge of CO2 uptake. Net CO2 uptake subsequently attained a steady-state rate substantially lower than the maximum. A large, O2-enchanced post-illumination burst of CO2 efflux was observed after a 10-min illumination period, corresponding to a minimum in the net CO2 uptake rate. A smaller, but O2-insensitive post-illumination burst was observed following a 30-min illumination period, when net CO2 uptake was at a steady-state rate. These post-illumination bursts appeared to reflect the release of an intracellular pool of inorganic carbon, which was much larger following the initial surge of net CO2 uptake than during the subsequent steady-state CO2 uptake period.With the mutant in CO2-free gas, O2-stimulated, net CO2 efflux was observed in the light, and a small, O2-dependent post-illumination burst was observed. With wild-type cells no CO2 efflux was observed in the light in CO2-free gas under either 2% or 21% O2, but a small, O2-dependent post-illumination burst was observed. These results were interpreted as indicating that photorespiratory rates were similar in the mutant and wild-type cells in the absence of CO2, but that the wild-type cells were better able to scavenge the photorespiratory CO2.  相似文献   

16.
We investigated the effect of photosynthetic electron transport and of the photosystem II (PSII) chlorophyll (Chl) antenna size on the rate of PSII photoinhibitory damage. To modulate the rate of photosynthesis and the light-harvesting capacity in the unicellular chlorophyte Dunaliella salina Teod., we varied the amount of inorganic carbon in the culture medium. Cells were grown under high irradiance either with a limiting supply of inorganic carbon, provided by an initial concentration of 25 mM NaHCO3, or with supplemental CO2 bubbled in the form of 3% CO2 in air. The NaHCO3-grown cells displayed slow rates of photosynthesis and had a small PSII light-harvesting Chl antenna size (60 Chl molecules). The half-time of PSII photodamage was 40 min. When switched to supplemental CO2 conditions, the rate of photodamage was retarded to a t1/2 = 70 min. Conversely, CO2-supplemented cells displayed faster rates of photosynthesis and a larger PSII light-harvesting Chl antenna size (500 Chl molecules). They also showed a rate of photodamage with t1/2 = 40 min. When depleted of CO2, the rate of photodamage was accelerated (t1/2  = 20 min). These results indicate that the in-vivo susceptibility to photodamage is modulated by the rate of forward electron transport through PSII. Moreover, a large Chl antenna size enhances the rate of light absorption and photodamage and, therefore, counters the mitigating effect of forward electron transport. We propose that under steady-state photosynthesis, the rate of light absorption (determined by incident light intensity and PS Chl antenna size) and the rate of forward electron transport (determined by CO2 availability) modulate the oxidation/reduction state of the primary PSII acceptor QA, which in turn defines the low/high probability for photodamage in the PSII reaction center. Received: 14 August 1997 / Accepted: 26 September 1997  相似文献   

17.
In two experiments, winter wheat (Triticum aestivum cv. Cerco) was grown in 350 (ambient) and 700 μmol mol-1 (elevated) atmospheric CO2 concentrations. In the first experiment, plants were grown at five levels of nitrogen fertilization, and in the second experiment, plants were grown at three levels of water supply. All plants were infected with powdery mildew, caused by the fungus Erysiphe graminis. Plants grown in elevated atmospheric CO2 concentrations had significantly reduced % shoot nitrogen contents and significantly increased % shoot water contents. At elevated atmospheric CO2 concentrations, where plant nitrogen content was significantly reduced, the severity of mildew infection was significantly reduced, and where host water content was significantly increased, the severity of mildew infection was significantly increased. In a moderate water supply treatment, the plants grown in elevated atmospheric CO2 concentrations had significantly reduced nitrogen contents (9·9%) and significantly increased water content (4%), the amount of mildew infection was unchanged. The severity of mildew infection appeared to be more sensitive to host water content than to host nitrogen content.  相似文献   

18.
Syvertsen  James P.  Graham  James H. 《Plant and Soil》1999,208(2):209-219
We hypothesized that greater photosynthate supply at elevated [CO2] could compensate for increased below-ground C demands of arbuscular mycorrhizas. Therefore, we investigated plant growth, mineral nutrition, starch, and net gas exchange responses of two Citrus spp. to phosphorus (P) nutrition and mycorrhizas at elevated atmospheric [CO2]. Half of the seedlings of sour orange (C. aurantium L.) and ‘Ridge Pineapple’ sweet orange (C. sinensis L. Osbeck) were inoculated with the arbuscular mycorrhizal (AM) fungus, Glomus intraradices Schenck and Smith and half were non-mycorrhizal (NM). Plants were grown at ambient or 2X ambient [CO2] in unshaded greenhouses for 11 weeks and fertilized daily with nutrient solution either without added P or with 2 mM P in a low-P soil. High P supply reduced AM colonization whereas elevated [CO2] counteracted the depressive effect of P on intraradical colonization and vesicle development. Seedlings grown at either elevated [CO2], high P or with G. intraradices had greater growth, net assimilation of CO2 (A CO2) in leaves, leaf water-use efficiency, leaf dry wt/area, leaf starch and carbon/nitrogen (C/N) ratio. Root/whole plant dry wt ratio was decreased by elevated [CO2], P, and AM colonization. Mycorrhizal seedlings had higher leaf-P status but lower leaf N and K concentrations than nonmycorrhizal seedlings which was due to growth dilution effects. Starch in fibrous roots was increased by elevated [CO2] but reduced by G. intraradices, especially at low-P supply. In fibrous roots, elevated [CO2] had no effect on C/N, but AM colonization decreased C/N in both Citrus spp. grown at low-P supply. Overall, there were no species differences in growth or A CO2. Mycorrhizas did not increase plant growth at ambient [CO2]. At elevated [CO2], however, mycorrhizas stimulated growth at both P levels in sour orange, the more mycorrhiza-dependent species, but only at low-P in sweet orange, the less dependent species. At low-P and elevated [CO2], colonization by the AM fungus increased A CO2 in both species but more so in sour orange than in sweet orange. Leaf P and root N concentrations were increased more and root starch level was decreased less by AM in sour orange than in sweet orange. Thus, the additional [CO2] availability to mycorrhizal plants increased CO2 assimilation, growth and nutrient uptake over that of NM plants especially in sour orange under P limitation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The effect of elevated CO2 concentration (CE) on leaf chlorophyll (Chl) and nitrogen (N) contents and photosynthetic rate (PN) was evaluated during the post-flowering stages of rice grown at CE (570 ± 50 μmol mol−1) in open top chamber (OTC), at ambient CO2 concentration (∼ 365 μmol mol−1) in OTC and at open field. Thirty-five day old seedlings were transplanted in OTCs or in field and allowed to grow till maturity. Chl and N contents were highest at the time of flowering and thereafter it started to decline. The rate of decline in Chl and N contents was faster in plants grown under CE mostly in later part of growth. Irrespective of treatment difference, flag leaf contained the highest amount of Chl and N than penultimate and third leaf. The higher PN was observed in leaves under CE than in the leaves in other two growing conditions. Considering growth stage, PN was the highest at flowering which reduced at the later part of growth due to degradation of Chl and N content of the leaf. Under CE it was 40.02 μmol m−2 s−1 at flowering and it reduced to only 14.77 μmol m−2 s−1 at maturity stage. The beneficial effect of CE in increasing leaf PN may be maintained by applying extra dose of nitrogen at the later stages of plant growth.  相似文献   

20.
Photorespiration by Chlamydomonas reinhardtii and Anacystis nidulans was measured as the oxygen inhibition of CO2 uptake and the CO2 compensation points. Net photosynthesis was oxygen dependent in Chlamydomonas grown in 5% CO2, but CO2 insensitive in cultures bubbled with air. Anacystis, even when cultured in 5% CO2, exhibited an CO2 insensitive net photosynthesis. The CO2 compensation point of Chlamydomonas grown in cultures bubbled with air and Anacystis grown in 5% CO2 enriched air, were reached shortly after the measurement was begun and the values were very low, less than 10 μl CO2 1?1; while Chlamydomonas grown in 5% CO2 enriched air for 4 days showed a high, but temporary CO2 compensation point (60 μl CO2 1?1). After a two hour adaptation in low CO2, a stable, low CO2 compensation point was reached. It seems that photorespiration can only be detected by the methods used in this study when the algae are cultured in high CO2, but a mechanism exists which blocks photorespiration when the green algae are adapted to low CO2 concentrations. When Chlamydomonas was treated with Diamox, an inhibitor of carbonic anhydrase, after cultivation in low CO2 (air), the cells behaved as if they had been grown in high CO2. They showed an oxygen sensitive net photosynthesis and a high CO2 compensation point. This indicates that carbonic anhydrase plays an important role in the regulation of a measurable photorespiration in Chlamydomonas. The results are discussed in relation to previous observations of photorespiration measured by enzyme assay, metabolic products and gas exchange properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号