首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Juvenile English sole were exposed intramuscularly to nitrofurantoin (NF) and the levels of 8-hydroxy-2′deoxyguanosine (8-OH-dG) in liver, kidney and blood were determined using reversed-phase HPLC with electrochemical detection. Identification and quantitation of the 8-OH-dG in the samples was accomplished by comparison with standard 8-OH-dG, which was characterized by UV spectroscopy and fast-atom bombardment mass spectrometry. The levels of hepatic 8-OH-dG increased (r2 = 0.59, P = 0.015) with the dose of NF (0.10 – 10 mg NF/kg fish). In kidney and blood, however, the levels of 8-OH-dG were significantly higher than controls only at the highest dose tested. The level of binding in liver ranged from 0.37 to 0.76 fmol 8-OH-dG/μg DNA. The levels of hepatic 8-OH-dG reached a maximum (approx. 1 fmol 8-OH-dG/μg DNA) between 1 and 3 days after exposure, followed by a decrease to control levels (approx. 0.25 fmol 8-OH-dG/μg DNA) at 5 days post-exposure. These data demonstrate the first direct evidence for the formation of oxidized DNA bases resulting from the metabolism of a nitroaromatic compound by fish.  相似文献   

2.
Juvenile English sole were exposed intramuscularly to nitrofurantoin (NF) and the levels of 8-hydroxy-2′deoxyguanosine (8-OH-dG) in liver, kidney and blood were determined using reversed-phase HPLC with electrochemical detection. Identification and quantitation of the 8-OH-dG in the samples was accomplished by comparison with standard 8-OH-dG, which was characterized by UV spectroscopy and fast-atom bombardment mass spectrometry. The levels of hepatic 8-OH-dG increased (r2 = 0.59, P = 0.015) with the dose of NF (0.10 – 10 mg NF/kg fish). In kidney and blood, however, the levels of 8-OH-dG were significantly higher than controls only at the highest dose tested. The level of binding in liver ranged from 0.37 to 0.76 fmol 8-OH-dG/μg DNA. The levels of hepatic 8-OH-dG reached a maximum (approx. 1 fmol 8-OH-dG/μg DNA) between 1 and 3 days after exposure, followed by a decrease to control levels (approx. 0.25 fmol 8-OH-dG/μg DNA) at 5 days post-exposure. These data demonstrate the first direct evidence for the formation of oxidized DNA bases resulting from the metabolism of a nitroaromatic compound by fish.  相似文献   

3.
A method for simultaneous determination of 5-hydroxy-N-methylpyrrolidone and 2-hydroxy-N-methylsuccinimide in urine is described. These compounds are metabolites of N-methyl-2-pyrrolidone, a powerful and widely used organic solvent. 5-Hydroxy-N-methylpyrrolidone and 2-hydroxy-N-methylsuccinimide were purified from urine by adsorption to a C8 solid-phase extraction column and then elution by ethyl acetate–methanol (80:20). After evaporation, the samples were derivatised at 100°C for 1 h by bis(trimethylsilyl)trifluoroacetamide. Ethyl acetate was then added and the samples were analysed by gas chromatography–mass spectrometry in the electron impact mode. The extraction recovery for 5-hydroxy-N-methylpyrrolidone was about 80% while that for 2-hydroxy-N-methylsuccinimide was about 30%. The intra-day precision for 5-hydroxy-N-methylpyrrolidone was 2–4% and the between-day precision 4–21% (4 and 60 μg/ml). The intra-day precision for 2-hydroxy-N-methylsuccinimide was 4–8% and the between-day precision 6–7% (2 and 20 μg/ml). The detection limit was 0.2 μg/ml urine for both compounds. The method is applicable for analysis of urine samples from workers exposed to N-methyl-2-pyrrolidone.  相似文献   

4.
We present the first report on characterization of the covalent flavinylation site in flavoprotein pyranose 2-oxidase. Pyranose 2-oxidase from the basidiomycete fungus Trametes multicolor, catalyzing C-2/C-3 oxidation of several monosaccharides, shows typical absorption maxima of flavoproteins at 456, 345, and 275 nm. No release of flavin was observed after protein denaturation, indicating covalent attachment of the cofactor. The flavopeptide fragment resulting from tryptic/chymotryptic digestion of the purified enzyme was isolated by anion-exchange and reversed-phase high-performance liquid chromatography. The flavin type, attachment site, and mode of its linkage were determined by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy of the intact flavopeptide, without its prior enzymatic degradation to the central aminoacyl moiety. Mass spectrometry identified the attached flavin as flavin adenine dinucleotide (FAD). Post-source decay analysis revealed that the flavin is covalently bound to histidine residue in the peptide STHW, consistent with the results of N-terminal amino acid sequencing by Edman degradation. The type of the aminoacyl flavin covalent link was determined by NMR spectroscopy, resulting in the structure 8alpha-(N(3)-histidyl)-FAD.  相似文献   

5.
Epidemiological studies conducted in metropolitan areas have demonstrated that exposure to environmental air pollution is associated with increases in mortality. Carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) are the major source of genotoxic activities of organic mixtures associated with respirable particulate matter, which is a constituent of environmental air pollution. In this study,we wanted to evaluate the relationship between exposure to these genotoxic compounds present in the air and endogenous oxidative DNA damage in three different human populations exposed to varying levels of environmental air pollution. As measures of oxidative DNA damage we have determined 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and cyclic pyrimidopurinone N-1,N2 malondialdehyde-2′-deoxyguanosine (M1dG) by the immunoslot blot assay from lymphocyte DNA of participating individuals. The level of endogenous oxidative DNA damage was significantly increased in individuals exposed to environmental air pollution compared to unexposed individuals from Kosice (8-oxodG adducts) and Sofia (M1dG adducts). However, there was no significant difference in the level of endogenous oxidative DNA and exposure to environmental air pollution in individuals from Prague (8-oxodG and M1dG adducts) and Kosice (M1dG adducts). The average level of M1dG adducts was significantly lower in unexposed and exposed individuals from Kosice compared to those from Prague and Sofia. The average level of 8-oxodG adducts was significantly higher in unexposed and exposed individuals from Kosice compared to those from Prague. A significant increasing trend according to the interaction of c-PAHs exposure and smoking status was observed in levels of 8-oxodG adducts in individuals from Kosice. However, no other relationship was observed for M1dG and 8-oxodG adduct levels with regard to the smoking status and c-PAH exposure status of the individuals. The conclusion that can be made from this study is that environmental air pollution may alter the endogenous oxidative DNA damage levels in humans but the effect appears to be related to the country where the individuals reside. Genetic polymorphisms of the genes involved in metabolism and detoxification and also differences in the DNA repair capacity and antioxidant status of the individuals could be possible explanations for the variation observed in the level of endogenous oxidative DNA damage for the different populations.  相似文献   

6.
The proteome of the highly NaCl-tolerant yeast Debaryomyces hansenii was investigated by two-dimensional polyacrylamide gel electrophoresis (2D PAGE), and 47 protein spots were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) followed by mass spectrometry (MS). The influence of NaCl on the D. hansenii proteome was investigated during the first 3 h of NaCl exposure. The rate of protein synthesis was strongly decreased by exposure to 8% and 12% (w/v) NaCl, as the average incorporation rates of l-[(35)S]methionine within the first 30 min after addition of NaCl were only 7% and 4% of the rate in medium without NaCl. In addition, the number of protein spots detected on 2D gels prepared from cells exposed to 8% and 12% (w/v) NaCl exceeded less than 28% of the number of protein spots detected on 2D gels prepared from cells without added NaCl. Several proteins were identified as being either induced or repressed upon NaCl exposure. The induced proteins were enzymes involved in glycerol synthesis/dissimilation and the upper part of glycolysis, whereas the repressed proteins were enzymes involved in the lower part of glycolysis, the route to the Krebs cycle, and the synthesis of amino acids. Furthermore, one heat shock protein (Ssa1p) was induced, whereas others (Ssb2p and Hsp60p) were repressed.  相似文献   

7.
《Free radical research》2013,47(12):1469-1478
ABSTRACT

Animal studies have shown that exposure to nonylphenol (NP) increases oxidative/nitrative stress, but whether it does so in humans is unknown. This study examines prenatal exposure to NP and its effects on oxidatively/nitratively damaged DNA, lipid peroxidation, and the activities of antioxidants. A total of 146 urine and blood specimens were collected during gestational weeks 27–38 and hospital admission for delivery, respectively. Urinary NP was analyzed by high-performance liquid chromatography (HPLC). Urinary biomarkers of oxidatively/nitratively damaged DNA and lipid peroxidation, including 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG), 8-nitroguanine (8-NO2Gua), 8-iso-prostaglandin F (8-isoPF) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), were simultaneously analyzed using isotope-dilution liquid-chromatography/electron spray ionization tandem mass spectrometry. The activities of maternal plasma superoxide dismutase and glutathione peroxidase were analyzed by enzyme-linked immunosorbent assay. Urinary NP level was significantly associated with 8-oxodG and 8-NO2Gua levels in late pregnancy, suggesting that NP may enhance oxidatively and nitratively damaged DNA. The adjusted odds ratios for high 8-oxodG level exhibited a significantly dose–response relationship with NP levels, stratified into four quartiles. 8-oxodG appears to be a more sensitive and effective biomarker of NP exposure than 8-NO2Gua. These relationships suggest NP may play a role in the pregnancy complications.  相似文献   

8.
Abstract Structural analysis of the 2-keto-3-deoxyoctonate region of lipopolysaccharide (LPS) isolated from Porphyromonas (Bacteroides) gingivalis was carried out. The substitution of the polysaccharide portion on the KDO was determined by gas chromatography/mass spectrometry of the product obtained by sequential derivatization of the LPS, including dephosphorylation, permethylation, carboxyl reduction, partial hydrolysis, carbonyl reduction, complete hydrolysis and O -acetylation. It was revealed that the KDO carries the polysaccharide on its position C5 and is phosphorylated on either position C7 or C8, although its exact position is not determined. The structure of the KDO region of P. gingivalis LPS in Gram-negative bacterial LPS had not hitherto been elucidated.  相似文献   

9.
8-Hydroxy-2′-deoxyguanosine (8-OHdG) and 5-methyl-2′-deoxycytidine (5-mdC) are utilized as useful biomarkers not only for early diagnosis but also for the detection and assessment of high-risk individuals. In the present study, a sensitive and specific method was developed for simultaneous determination of 8-OHdG and 5-mdC in DNA by high performance liquid chromatography/positive electrospray ionization tandem mass spectrometry. The limits of quantification for 8-OHdG and 5-mdC were 80 and 40 pg/ml, respectively. The calibration curves of 8-OHdG and 5-mdC were linear over the concentration range of 0.02–100 ng/ml and the correlation coefficients were higher than 0.9990. The intra-day and inter-day relative standard derivative values were in the range of 0.70–7.47% for 8-OHdG and 1.07–7.06% for 5-mdC, respectively. The recoveries were 93.4–108.5% for 8-OHdG and 87.4–104.9% for 5-mdC, respectively. This method was validated by determination of the background levels of 8-OHdG and 5-mdC in calf thymus DNA, and satisfactory results were obtained.  相似文献   

10.
We previously reported that accessory sex gland fluid (AGF) from high fertility (HF) bulls influenced the oocyte-penetrating capacity of cauda epididymal sperm from low fertility (LF) bulls, based on in vitro fertilization (IVF) assays. The present study determined if AGF proteins were associated with these effects. Nineteen IVF assays with 12 bulls were grouped as follows. Group I (n = 8): assays where sperm from LF bulls exposed to AGF from HF bulls had greater oocyte penetration than exposed to homologous AGF. Group II (n = 7): sperm from LF bulls to AGF from HF bulls versus homologous AGF showed no significant differences. Group III (n = 4): sperm from LF bulls treated with homologous AGF had greater fertility than sperm treated with AGF from HF bulls. Sire fertility was based on nonreturn rates (NNR) and AGF collected by artificial vagina from bulls with cannulated vasa deferentia. Two-dimensional SDS-PAGE maps of AGF were analyzed by PDQuest and proteins identified by tandem mass spectrometry and Western blots. Differences in spot intensity between AGF of HF and LF bulls were compared across groups of IVF assays (P < 0.05). The expression of BSP A1/A2 and A3, BSP 30 kDa, clusterin, albumin, phospholipase A(2) (PLA(2)), and osteopontin was greater in the AGF of HF bulls in Group I as compared to Groups II and III. Conversely, there was less nucleobindin in the AGF of HF bulls in Group I than in Groups II and III. This is the first report of nucleobindin (58 kDa/pI 5.6) in male reproductive fluids, using both immunoblots and mass spectrometry. Thus, the effect of AGF from HF bulls on epididymal sperm is likely the result of specific proteins expressed in the AGF.  相似文献   

11.
8-Hydroxyadenine (8-OH-Ade) is one of the major lesions, which is formed in DNA by hydroxyl radical attack on the C-8 position of adenine followed by oxidation. We describe the measurement of the nucleoside form of this compound, 8-hydroxy-2'-deoxyadenosine (8-OH-dAdo) in DNA by liquid chromatography/mass spectrometry (LC/MS). The developed methodology enabled the separation by LC of 8-OH-dAdo from intact and modified nucleosides in enzymic hydrolysates of DNA. Measurements by MS were performed using atmospheric pressure ionization-electrospray process. Isotope-dilution MS was applied for quantification using a stable isotope-labeled analog of 8-OH-dAdo. The level of sensitivity of LC/MS with selected-ion monitoring (SIM) for 8-OH-dAdo amounted to approximately 10 femtomol of this compound on the LC column. This level of sensitivity is similar to that previously reported using LC-tandem MS (LC/MS/MS) with multiple-reaction monitoring mode (MRM) (7.5 femtomol). This compound was quantified in DNA at a level of approximately one molecule/10(6) DNA bases using amounts of DNA as low as 5 microg. The results suggested that this lesion may be quantified in DNA at even lower levels, when more DNA is used for analysis. In addition, gas chromatography/isotope-dilution mass spectrometry with SIM (GC/IDMS-SIM) was applied to measure 8-OH-Ade in DNA following its removal from DNA by acidic hydrolysis. The background levels of 8-OH-dAdo and 8-OH-Ade measured by LC/IDMS-SIM and GC/IDMS-SIM, respectively, were nearly identical. In addition, DNA samples, which were exposed to ionizing radiation at different radiation doses, were analyzed by these techniques. Nearly identical results were obtained, indicating that both LC/IDMS-SIM and GC/IDMS-SIM can provide similar results. The level of sensitivity of GC/MS-SIM for 8-OH-Ade was also measured and found to be significantly greater than that of LC/MS-SIM and the reported sensitivity of LC/MS/MS-MRM for 8-OH-dAdo. The results show that the LC/MS technique is well suited for the measurement of 8-OH-dAdo in DNA.  相似文献   

12.
Ultraviolet radiation is one of the most deleterious forms of radiation to terrestrial organisms and is involved in formation of mutagenic pyrimidine dimers and oxidized nucleotides. The biflavonoid fraction (BFF), extracted from needles of Araucaria angustifolia was capable of protecting calf thymus DNA from damage induced by UV radiation. This occurred through prevention of cyclobutane thymine dimer and 8-oxo-7,8-dihydro-2′-deoxyguanosine formation, this being quantified by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) in a multiple reaction monitoring mode (MRM) and by HPLC-coulometric detection, respectively.  相似文献   

13.
In this report, we describe the localization of diacylglycerol lipase‐α (DAGLα) in nuclei from adult cortical neurons, as assessed by double‐immunofluorescence staining of rat brain cortical sections and purified intact nuclei and by western blot analysis of subnuclear fractions. Double‐labeling assays using the anti‐DAGLα antibody and NeuN combined with Hoechst staining showed that only nuclei of neuronal origin were DAGLα positive. At high resolution, DAGLα‐signal displayed a punctate pattern in nuclear subdomains poor in Hoechst's chromatin and lamin B1 staining. In contrast, SC‐35‐ and NeuN‐signals (markers of the nuclear speckles) showed a high overlap with DAGLα within specific subdomains of the nuclear matrix. Among the members of the phospholipase C‐β (PLCβ) family, PLCβ1, PLCβ2, and PLCβ4 exhibited the same distribution with respect to chromatin, lamin B1, SC‐35, and NeuN as that described for DAGLα. Furthermore, by quantifying the basal levels of 2‐arachidonoylglycerol (2‐AG) by liquid chromatography and mass spectrometry (LC‐MS), and by characterizing the pharmacology of its accumulation, we describe the presence of a mechanism for 2‐AG production, and its PLCβ/DAGLα‐dependent biosynthesis in isolated nuclei. These results extend our knowledge about subcellular distribution of neuronal DAGLα, providing biochemical grounds to hypothesize a role for 2‐AG locally produced within the neuronal nucleus.

  相似文献   


14.
Although measurements of plasma F2-isoprostanes are established markers of oxidative stress, their quantification only reflects acute non-enzymatic lipid peroxidation. In this study, a new approach is described for the rapid isolation and measurement of urinary 8-epi-PGF2alpha and its endogenous beta-oxidation metabolites (2,3-dinor-8-epi-PGF2alpha and 2,3-dinor-5,6-dihydro-PGF2alpha) for use as index of total body oxidative stress. Isoprostanes were partitioned with ethyl acetate and subsequently purified by chromatography on an aminopropyl (NH2) and silica (Si) cartridge. Final analysis of F2-isoprostanes as trimethylsilyl-ester/pentafluorobenzyl ester derivatives was carried out by stable isotope dilution mass spectrometry. Overall recovery of F2-isoprostanes was 80+/-4%. Inter- and intra-assay coefficients of variation were 5% and 7%, respectively. In a group of healthy humans, the mean excretion rates expressed as nmol/mmol creatinine for 2,3-dinor-8-epi-PGF2alpha, 2,3-dinor-5,6-dihydro-8-epi-PGF2alpha, and 8-epi-PGF2alpha were 5.43+/-1.93, 2.16+/-0.71, and 0.36+/-0.16, respectively. Correlations were obtained between 8-epi-PGF2alpha and 2,3-dinor-8-epi-PGF2alpha or 2,3-dinor-5,6-dihydro-8-epi-PGF2alpha (r=0.998 and r=0.937, respectively). A strong relationship was also seen between 2,3-dinor-8-epi-PGF2 and 2,3-dinor-5,6-dihydro-8-epi-PGF2alpha (r=0.949). The new technique allows for high sample throughput and avoids the need for HPLC and/or other expensive equipment required for the initial sample preparation. Simultaneous analysis of urinary 8-epi-PGF2alpha and its metabolites should provide unique tool in clinical trials exploring the role of oxidant injury in human disease.  相似文献   

15.
C Isotopomer Analysis of Glutamate by Tandem Mass Spectrometry   总被引:1,自引:0,他引:1  
Tandem mass spectrometry allows a compound to be isolated from the rest of the sample and dissociated into smaller fragments. We show here that fragmentation of glutamate mass isotopomers yields additional mass spectral data that significantly improve the analysis of metabolic fluxes compared to full-scan mass spectrometry. In order to validate the technique, tandem and full-scan mass spectrometry were used along with (13)C NMR to analyze glutamate from rat hearts perfused with three substrate mixtures (5 mM glucose plus 5 mM [2-(13)C]acetate, 5 mM [1-(13)C]glucose plus 5 U/L insulin, and 5 mM glucose plus 1 mM [3-(13)C]pyruvate). Analysis by tandem mass spectrometry showed that the enriched substrate contributed 98 +/- 2, 53 +/- 2, and 84 +/- 7%, respectively, of acetyl-coenzyme A while the rate of anaplerotic substrate entry was 7 +/- 3, 25 +/- 8, and 16 +/- 8%. Similar results were obtained with (13)C NMR data, while values from full-scan data had higher error. We believe that this is the first use of tandem mass spectrometry to determine pathway flux using (13)C-enriched substrates. Although analysis of the citric acid cycle by NMR is simpler (and more intuitive), tandem mass spectrometry has the potential to combine high sensitivity with the high information yield previously available only by NMR.  相似文献   

16.
Rapid resolution liquid chromatography/tandem multi-stage mass spectrometry (RRLC-MS(n)) and rapid resolution liquid chromatography/tandem mass spectrometry (RRLC/MS/MS) methods were developed for the identification and quantification of ergosterol and its metabolites from rat plasma, urine and faeces. Two metabolites (ERG1 and ERG2) were identified by RRLC/MS(n). The concentrations of the ergosterol were determined by RRLC/MS/MS. The separation was performed on an Agilent Zorbax SB-C18 with the mobile phase consisting of methanol and water (containing 0.1% formic acid). The detection was carried out by means of atmospheric pressure chemical ionization mass spectrometry in positive ion mode with multiple reaction monitoring (MRM). Linear calibration curves were obtained in the concentration range of 7-2000, 6-2000 and 8-7500 ng/mL for plasma, urine and faecal homogenate, respectively. The intra- and inter-day precision values (RSD) were below 10%. The method was applied to the pharmacokinetic properties and elimination pathway of ergosterol in rats.  相似文献   

17.
While ELISA is a frequently used means of assessing 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) in biological fluids, differences in baseline urinary 8-oxodG levels, compared to chromatographic techniques, have raised questions regarding the specificity of immunoassays. Recently, ELISA of salivary 8-oxodG has been used to report on periodontal disease. We compared salivary 8-oxodG levels, determined by two commercial ELISA kits, to liquid chromatography-tandem mass spectrometry (LC-MS/MS) with prior purification using solid-phase extraction. While values were obtained with both ELISA kits, salivary 8-oxodG values were below or around the limit of detection of our LC-MS/MS assay. As the limit of detection for the LC-MS/MS procedure is much lower than ELISA, we concluded that the assessment of salivary 8-oxodG by ELISA is not accurate. In contrast to previous studies, ELISA levels of urinary 8-oxodG (1.67 ± 0.53 pmol/μmol creatinine) were within the range reported previously only for chromatographic assays, although still significantly different than LC-MS/MS (0.41 ± 0.39 pmol/μmol creatinine; p = 0.002). Furthermore, no correlation with LC-MS/MS was seen. These results question the ability of ELISA approaches, at present, to specifically determine absolute levels of 8-oxodG in saliva and urine. Ongoing investigation in our laboratories aims to identify the basis of the discrepancy between ELISA and LC-MS/MS.  相似文献   

18.
A sensitive and stereospecific liquid chromatography‐tandem mass spectrometry method for the quantitative determination of TWo8 enantiomers ((2RS)‐1‐(7‐methoxy‐1H‐indol‐4‐yloxy)‐3‐(2‐(2‐methoxyphenoxy)ethylamino)‐propan‐2‐ol) was developed and validated in rat serum and some tissues. Racemic TWo8 is a new chemical entity, and it has been shown to possess pharmacological activity in vivo. The assay involved the diastereomeric derivatization of racemic TWo8 with 2,3,4,6‐tetra‐O‐acetyl‐beta‐glucopyranosyl isothiocyanate. The TWo8 diastereoisomers quantification was performed on a triple quadrupole mass spectrometer employing an electrospray ionization technique. The precursor to the product ion transition for TWo8 derivatives and for the internal standard (carbamazepine) was m/z 776.4 → 387.2 and 237.4 → 194.4, respectively. The assay was validated with a linear range of 10–2000 ng/ml of racemic TWo8. The inter‐day precisions for (?)‐(S)‐TWo8 and (+)‐(R)‐TWo8 were 2.1% to 14.9% and 1.3% to 14.8%, respectively. The inter‐day accuracy for (?)‐(S)‐TWo8 and (+)‐(R)‐TWo8 was within 86% to 114% and 91% to 114%, respectively. A pilot pharmacokinetic study of this new β‐adrenolytic compound has shown that (?)‐(S)‐TWo8 is eliminated faster than its antipode. The terminal half‐lives of (?)‐(S)‐TWo8 and (+)‐(R)‐TWo8 were 3.2 and 3.9 h, respectively. The compound distribution into different organs, evaluated in tissue homogenate samples following TWo8 intravenous administration, showed an enantioselective penetration of TWo8 enantiomers in the liver (p < 0.03), in the kidney (p < 0.001), and in the lungs (p < 0.05). The developed method using liquid chromatography‐tandem mass spectrometry method with electrospray ionization could be employed for quantitative determination of compounds with similar structure. Chirality 24:591–599, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
A strong chemiluminescence (CL) response is observed when potassium permanganate solution is injected into basic luminol solution. When the CL reaction terminates, subsequent injection of Hg2+ solution into the reaction mixture results in a new CL reaction. Based on the post-catalytic enhancement effect of Hg2+ on the potassium permanganate-luminol system in basic media, a fast and simple CL-coupled flow injection analysis for the determination of Hg2+ was developed. In optimum conditions, CL intensity is proportional to Hg2+ concentration over the range 1.0 x 10(-8)-1.0 x 10(-5) g/mL, with a detection limit of 2.0 x 10(-9) g/mL. The relative standard deviation (RSD) is 3.6% for 1.0 x 10(-7) g/mL Hg2+ (n = 11). After pretreatment with sulphydryl cotton fibre, environmental water samples were analysed by the proposed method for total mercury determination with satisfactory results. The results were in good agreement with those given by hydride generation-cold vapour atomic absorption spectrometry (HG-CVAAS).  相似文献   

20.
We attempted to improve the extraction procedures to determine the F(2)-isoprostanes in plasma of umbilical cord arterial and venous blood by gas chromatography mass spectrometry. Plasma samples were deproteinized and hydrolyzed; free and esterified F(2)-isoprostanes were extracted by solid-phase extraction columns with citric acid/methanol/cyclohexane and ammonia solution/methanol and then derivatized by PFBBr and BSTFA. Concentrations of total plasma F(2)-isoprostanes eluted at the retention time of an internal standard of 8-iso-prostaglandin F(2alpha)-D(4) were quantified. The absolute recovery was 83+/-1.9% (95% confidence). Intraassay precision and interassay precision were lower than 1.0%. Analytical accuracy was 99.0+/-0.4% (95% confidence). Linearity, r(2), over the concentration range of 10 to 5000 pg/ml of spiked 8-iso-prostaglandin F(2alpha) in plasma was 0.9985. The method detection limit was 21 pg/ml (99% confidence) and the limit of quantitation was approximately 4 pg/ml. Analysis of 200 neonatal cord blood samples revealed few overlapping peaks causing interference in the elution of the F(2)-isoprostanes. With the use of an autosampler and one technician, 48 samples can be completed within 24h with 6h of actual hands-on work. This method could be potentially employed for routine analysis of plasma F(2)-isoprostanes in clinical laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号