首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology of the post-ovulatory follicle (or corpus luteum) in the sparrow (Passer domesticus) ovary has been investigated with special reference to the origin of luteal cells which finally fill the fillicular activity. The development and degeneration of luteal cell mass has been described in three phases. The luteal cell mass consists of hypertrophied granulosa luteal cells during the first phase and of both granulosa and thecal luteal cells during the second phase. During the second phase owing to their different staining reactions, both types of luteal cells can be differentiated. In the advanced stages of regression, i.e. during the third phase, the whole luteal cell mass consists of thecal luteal cells and connective tissue elements as the granulosa luteal cells had degenerated and disappeared by this stage.  相似文献   

2.
Using immunohistochemistry and Western blot analysis we attempted to identify the estrogen receptors in ovine luteal cells at different stages of the estrous cycle. Monoclonal antibody against estrogen receptors was used for immunolocalization of estrogen receptor-alpha in corpora lutea sections. Generally, the most intense cytoplasm staining was present in large luteal cells. On the 6th day of the estrous cycle, weak immunostaining of estrogen receptors was observed in large luteal cells as well as in the connective tissue. Luteal cells from regressing corpora lutea expressed the weakest immunostaining. The most intense immunoreactivity for estrogen receptors was found in sections of corpora lutea collected on the 9th day of the cycle. Both, cytoplasmic and nuclear localization was observed depending on cell types in the ovine corpus luteum. Our studies demonstrated the presence of the estrogen receptor-alpha in the luteal cells and suggested an autocrine/paracrine role of estrogen in the regulation of estrous cycle in sheep.  相似文献   

3.
The corpus luteum, a temporally established endocrine gland, formed on the ovary from remaining cells of the ovulated follicle, plays a key role in maintaining the early mammalian pregnancy by secreting progesterone. Despite being a monovular species, 2-12 corpora lutea (CLs) were found on the elephant ovaries during their long pregnancy lasting on average 640 days. However, the function and the formation of the additional CLs and their meaning remain unexplained. Here, we show from the example of the elephant, the close relationship between the maternally determined luteal phase length, the formation of multiple luteal structures and their progestagen secretion, the timespan of early embryonic development until implantation and maternal recognition. Through three-dimensional and Colour Flow ultrasonography of the ovaries and the uterus, we conclude that pregnant elephants maintain active CL throughout gestation that appear as main source of progestagens. Two LH peaks during the follicular phase ensure the development of a set of 5.4 ± 2.7 CLs. Accessory CLs (acCLs) form prior to ovulation after the first luteinizing hormone (LH) peak, while the ovulatory CL (ovCL) forms after the second LH peak. After five to six weeks (the normal luteal phase lifespan), all existing CLs begin to regress. However, they resume growing as soon as an embryo becomes ultrasonographically apparent on day 49 ± 2. After this time, all pregnancy CLs grow significantly larger than in a non-conceptive luteal phase and are maintained until after parturition. The long luteal phase is congruent with a slow early embryonic development and luteal rescue only starts 'last minute', with presumed implantation of the embryo. Our findings demonstrate a highly successful reproductive solution, different from currently described mammalian models.  相似文献   

4.
Ultrasonography of the bovine ovary   总被引:5,自引:0,他引:5  
A linear-array ultrasound scanner with a 5-MHz transducer was evaluated for the study of follicular and luteal status in heifers. The ovaries of five heifers were monitored daily until all heifers were examined for a period from three days before an ovulation to three days after the next ovulation. There was a significant difference among days for diameter of the largest follicle and second largest follicle and for the number of follicles 4-6 mm and >10 mm. Differences seemed to be caused by the presence of several 4- to 6-mm follicles in early diestrus, growth to an ostensibly ovulatory size and subsequent regression of a follicle during mid-cycle, and selective accelerated growth of the ovulatory follicle four days before ovulation. The corpus luteum became visible approximately three days after ovulation and was identifiable throughout the rest of the interovulatory interval. In two of the five heifers, the corresponding corpus albicans was identified for three days after the second ovulation. Two heifers were induced to superovulate and follicular growth was monitored. The results indicated that the follicles which ovulated originated from the population present when the superovulation treatment was initiated. The ultrasound instrument was judged effective for monitoring and evaluating ovarian follicles and corpora lutea in normal and superovulated heifers.  相似文献   

5.
Rat ovarian tissue has been shown to contain high-affinity gonadotropin-releasing hormone (GnRH) receptors, and synthetic GnRH analogues have been shown to inhibit steroid production by rat corpora lutea in vivo and in vitro. These results raise the possibility that an ovarian GnRH-like peptide may be involved in normal luteal regression. We have examined binding of D-Ala6-des-Gly10-GnRH ethylamide (D-Ala) to rabbit corpora lutea, and have investigated the luteolytic activity of this analogue in hypophysectomized, pseudopregnant rabbits. Three hypophysectomized estrogen-treated rabbits were injected with 0.25 mg D-Ala s.c. every 6 h for 48 h during mid-pseudopregnancy, and three were injected with vehicle only. Treatment with D-Ala produced no acute changes in serum progesterone, nor was the time of luteal regression altered. Rabbit anterior pituitary tissue was found to contain high-affinity GnRH receptors (Ka = 7.0 X 10(9) M-1; 188.2 +/- 35.6 fmol/mg protein). However, no similar high-affinity GnRH receptors were detected in rabbit luteal tissue from any stage of pseudopregnancy. Some apparent low-affinity binding was observed, but this displaceable binding was subsequently observed in all control tissues tested. Thus, a potent GnRH analogue does not have any detectable direct effect on steroidogenesis in the rabbit corpus luteum, nor are high-affinity GnRH binding sites present in rabbit luteal tissue.  相似文献   

6.
7.
Little information is available on the ultrastructure of macrophages in the corpus luteum or their importance in the regression of luteal tissue. In the present study, the fine structure of activated luteal macrophages during pregnancy and the postpartum period was examined by electron microscopy of guinea pig ovaries fixed by vascular perfusion. In these corpora lutea, macrophages can readily be distinguished from luteal cells. Activated macrophages typically display three prominent inclusions in their cytoplasm: (1) heterophagic vacuoles, (2) distinctive large dense inclusions, and (3) large and small electron-lucent vacuoles. In addition, they contain numerous smaller lysosome-like dense bodies. Activated macrophages in corpora lutea also characteristically show many surface protrusions, such as processes, folds or pseudopodia, which often occur in close contact with nearby luteal cells. Generally, nuclei of macrophages are irregular in shape and display a dense border of heterochromatin, thus differing from those of luteal cells. Macrophages seem to be most abundant in regressing corpora lutea, where they commonly display heterophagic vacuoles containing recognizable luteal cell fragments, evidence that these phagocytes ingest senescent luteal cells. The digestion of luteal cell components in heterophagic vacuoles presumably gives rise to the distinctive large dense inclusions typically seen in macrophages. The findings of this study indicate that macrophages play a central role in luteolysis by phagocytizing luteal cells or their remnants. They therefore appear to bring about the reduction in volume of the corpus luteum that occurs as this tissue regresses. These results taken together with those previously published (Paavola, '78) further indicate that breakdown of the corpus luteum during postpartum luteolysis in guinea pigs involves both autophagy and heterophagy.  相似文献   

8.
Ovarian changes during the reproductive cycle of the oviparous garden lizard (Calotes versicolor) are described. It ovulates from last week of June to first week of September but most often in July and August when the monsoon occurs. The number of eggs ovulated vary from 10 to 32. After ovulation, the ovaries are reduced in size. From October to May, the ovaries contain small pre-vitellogenic follicles, which increase in size in June when most of yolk deposition occurs. Several nuclei are seen in the ooplasm of pre-vitellogenic follicles; they are finally absorbed before yolk deposition starts. Follicular atresia generally occurs in follicles with polymorphic granulosae, in post-ovulatory ovaries. Presumably interstitial gland cells are formed by the hypertrophy of the theca interna cells of atretic follicles. Pre-ovulatory follicles have highly vascularized thecae and invaginations of the follicular epithelium. After ovulation, the follicle cells hypertrophy to form the luteal cell mass filling the follicular cavity. Fibroblasts, which appear to arise from the theca interna, invade the luteal cell mass and form septa. Capillaries occur in the luteal cell mass.  相似文献   

9.
Luz MR  Cesário MD  Binelli M  Lopes MD 《Theriogenology》2006,66(6-7):1448-1453
The present study evaluated the occurrence of apoptosis and caspase-3 activity in the canine corpus luteum during the period of luteal regression in eight pregnant and nine nonpregnant diestrus bitches. Intact luteal cells were obtained from corpora lutea in both peripartum pregnant bitches and nonpregnant diestrus bitches at approximately 65 d (range 63-68) after estrus, but not at days 75 and 85 in nonpregnant bitches. In all bitches, apoptotic cells were rarely detected and when present, those cells were more easily detected using the hematoxylin and eosin technique than using the critical electrolyte concentration technique. The luteal structures at 75 and 85 d of diestrus had histological characteristics similar to a corpus albicans. Caspase-3 activity was detected in morphologically normal corpora lutea from both pregnant and diestrus bitches around day 65, and also in the later structures considered corpus albicans tissue. These results suggested that apoptosis may not be the major mechanism involved in canine functional luteal regression, and that caspase-3 participated in both functional and morphological luteolysis and in the tissue reorganization involved in corpus albicans formation.  相似文献   

10.
Expression of intercellular adhesion molecule-1 (ICAM-1) and the accumulation of monocytes/macrophages are inflammatory events that occur during PRL (PRL)-induced regression of the rat corpus luteum. Here we have compared the ability of prostaglandin F2alpha (PGF) and PRL to induce, in rat corpora lutea, inflammatory events thought to perpetuate luteal regression. Immature rats were ovulated with eCG-hCG and then hypophysectomized (Day 0), which resulted in a single cohort of persistent, functional corpora lutea. On Days 9-11, the rats received twice daily injections of saline, PGF (Lutalyse, 250 microg/injection), or PRL (312 microg/injection) to induce luteal regression. Surprisingly, luteal weight and plasma progestin concentrations (progesterone and 20alpha-dihydroprogesterone) did not differ between PGF-treated rats and controls; whereas both luteal weight and plasma progestins declined significantly in PRL-treated rats. Furthermore, corpora lutea of PGF-treated rats and controls contained relatively minimal ICAM-1 staining and few monocytes/macrophages. In contrast, but as expected, corpora lutea of PRL-treated rats stained intensely for ICAM-1 and contained numerous monocytes/macrophages. In an additional experiment, there was no indication that luteal prostaglandin F2alpha receptor mRNA diminished as a result of hypophysectomy. These findings suggest that prolactin, not PGF, induces the inflammatory events that accompany regression of the rat corpus luteum.  相似文献   

11.
Porcine luteal cells were collected from corpora lutea in four different stages of the luteal phase and cultured as monolayers. Progesterone (P4) secretion was assayed using radioimmunoassays (Gregoraszczuk, 1991). Luteal cells cultured from porcine corpora lutea collected in the early luteal phase maintained steroidogenic capacity for 6 days in culture until the time comparable with midluteal corpora lutea. Luteal cells collected from mature and regressing corpora lutea did not dedifferentiate during 2 days of culture. After this time secretion of progesterone decreased to undetectable amounts characteristic of old corpora lutea. The regression in the culture progressed. The results demonstrate that the degree of the decline of progesterone depends on the type of corpus luteum, which is connected to particular time intervals of the luteal phase. Before starting experiments it is necessary to take into consideration the stage of the luteal phase from which the material is collected for culture. This study provides evidence that long term culture is useful for investigating a variety of aspects of luteal function only if cells are collected in the early luteal phase. Short term culture is suitable for investigation of cells collected from mid and late luteal phase. Regulation of luteal function is dependent on stage of the luteal phase.  相似文献   

12.
Tuatara (Sphenodon spp.) are rare reptiles, members of the reptilian order Sphenodontida, inhabiting small offshore islands of New Zealand. Females usually require about three years to yolk a clutch of eggs followed by an 8-month period of in utero egg shelling. As in other vertebrates, the post-ovulatory follicle forms a transitory endocrine structure, the corpus luteum. The tuatara Sphenodon punctatus exhibits a corpus luteum having several unusual morphological features as compared to turtles and squamate reptiles. Like the crocodilians, the tuatara has a corpus luteum in which the luteal cell mass never fills the central cavity and in which the thecal fibroblasts do not close the ovulation aperture. As in all oviparous reptiles examined, however, the corpus luteum appears to persist throughout gravidity based on its histological appearance. During gravidity, plasma progesterone concentrations are detectable, even though gravidity lasts an exceptionally long time (8 months) for an oviparous species. Luteolysis is initiated within two months following oviposition. The initial stages of luteolysis appear rapid, but luteal scar tissue is apparent in the ovaries of all adult females we examined and probably persists for many years post-oviposition. J Morphol 232:79–91, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
The administration of prolactin to hypophysectomized rats results in regression of the corpora lutea, accompanied by immune-inflammatory events such as infiltration of monocytes and macrophages. Recent reports indicate an autocrine role for progesterone during the lifespan of the corpus luteum. In the present study, an inhibitor of 3beta-hydroxysteroid dehydrogenase, Trilostane, was used to investigate the hypothesis that a decrease in luteal tissue steroids precipitates the cascade of immune-inflammatory events leading to luteal regression in prolactin-treated hypophysectomized rats. Immature rats were induced to ovulate by administering eCG-hCG, and hypophysectomized on the day after ovulation (at 32 days of age). Rats were injected s.c. 9-11 days after hypophysectomy with (a) Trilostane (80 mg kg(-1) day(-1)), (b) ovine prolactin (500 mg day(-1)), (c) Trilostane plus prolactin, or (d) vehicle. Plasma and luteal tissue progesterone and 20alpha-dihydroprogesterone ('progestin') were quantified; luteal tissue monocytes-macrophages and apoptotic nuclei were counted, and luteal wet mass was determined. Rats treated with prolactin alone showed the expected markers of luteal regression: decreased plasma progestin, increased numbers of monocytes-macrophages and apoptotic nuclei in luteal tissue, and decreased luteal wet mass; however, progestin concentration in luteal tissue was unchanged. Treatment with Trilostane reduced plasma and luteal tissue progestin, but did not result in an infiltration of monocytes-macrophages or increased numbers of apoptotic nuclei in the corpora lutea, or any change in luteal wet mass. Trilostane in combination with prolactin reduced plasma and luteal tissue progestin and produced the expected markers of regression, with the exception of luteal tissue mass, which remained unchanged. In conclusion, inhibition of steroidogenesis does not initiate luteal regression or augment prolactin-induced luteal regression in hypophysectomized rats. Prolactin-induced infiltration of monocytes-macrophages is not accompanied by a decrease in luteal tissue progestin, at least in the early stages of luteal regression.  相似文献   

14.
There is great variability between animals in the number of viable embryos produced following different superovulation regimens. It is not clear if all the follicles that ovulate produce healthy oocytes and form normal corpora lutea (CL) following superovulation. The objective of this study was to assess and compare CL from heifers undergoing three superovulatory regimes with CL from unstimulated heifers on the basis of morphology and morphometric analysis of luteal cells.Beef heifers were superovulated using either: (a) 24 mg porcine follicle stimulating hormone (pFSH) given twice daily over a 4 day period in decreasing doses commencing on day 10 of the oestrous cycle; (b) a single injection of 2000 IU pregnant mare serum gonadotrophin (PMSG) given on day 10 of the cycle; (c) as in (b) but followed by 2000 IU anti-PMSG (IgG to neutralise endogenous PMSG) at the time of the first insemination which was 12–18 h after the onset of oestrus (n = 33 per treatment). Luteolysis was induced 48 h after initial gonadotrophin administration and CL were collected on day 7 of the subsequent cycle and from ten unstimulated heifers (controls) at the same stage of the oestrous cycle. CL morphology was studied at light and electron microscopy levels. Morphometric analysis was performed on luteal cells. Subcellular morphology was similar in heifers from all groups. However, CL from superovulated heifers had more connective tissue than CL from control heifers; the connective tissue content of CL in the anti-PMSG-treated group was particularly marked. Both large and small luteal cells in the heifers receiving anti-PMSG had significantly smaller (P < 0.001) area and sphere volume than similar cells from CL of heifers in the other groups.  相似文献   

15.
Summary Corpora lutea from 12 pregnant women were prepared for immunohistochemical localization of relaxin using a highly specific antiserum. A positive response is given by luteal cells that are diffusely distributed throughout the corpus luteum. These cells do not form a distinctive group in any particular area. A negative response is seen in the adjacent ovarian tissue, and also in nongestational corpora lutea in an early luteal phase.  相似文献   

16.
Corpora lutea were collected from cows at four stages of the luteal phase and prepared for immunostaining at the light microscope level. Other corpora lutea, which were fully developed, were dispersed by collagenase treatment and freshly isolated and cultured cells were processed for immunostaining. Electron microscopy was carried out on mature corpora lutea and freshly isolated cells. Positive staining for cholesterol side-chain-cleavage cytochrome P-450 (P-450scc), an inner-mitochondrial membrane enzyme considered to catalyse the rate-limiting step in the conversion of cholesterol to progesterone, was observed in all corpora lutea. The intensity of staining was much greater in mature corpora lutea than in young or regressing corpora lutea. Only small and large luteal cells stained positively and cells of the vasculature and other connective tissue elements did not. When cells were cultured and had become flatter, the intensity of immunostaining was observed to be greater in large luteal cells than in small luteal cells which was interpreted to be due, in part, to the greater volume density of mitochondria in these cells. In some cultured small luteal cells the pattern of immunostaining appeared as whorls of strands encircling the nucleus. This pattern was interpreted as a three-dimensional network of mitochondria organized into 'strands', more than one mitochondrion in cross-section, perhaps formed during the process of attachment and elongation of the cells. Further observations made at the electron microscope level, included the presence of close (5-8 nm) contacts with interconnecting septa between small luteal cells in tissue.  相似文献   

17.
In regressive corpora lutea, apoptosis of luteal cells, expression of monocyte chemoattractant protein-1 (MCP-1), and accumulation of monocytes/macrophages occur. However, whether these three events are correlated and what cell type expresses MCP-1 have yet to be determined. To clarify these issues, we performed histochemical examinations to determine the localization and the numbers of MCP-1 mRNA-containing cells, apoptotic cells, and monocytes/macrophages in corpora lutea of normally cycling rats. We found that the Mcp-1 gene is expressed in nonapoptotic steroidogenic luteal cells. Corpora lutea that contained MCP-1 mRNA-expressing cells increased in number at estrus together with those containing apoptotic luteal cells. When individual corpora lutea at estrus were analyzed, those with many MCP-1-expressing cells contained few apoptotic cells, and vice versa. These results collectively suggest the following pathway for apoptosis- and MCP-1-dependent regression of the corpus luteum: 1) luteal cells are induced to undergo apoptosis at estrus, and the activation of Mcp-1 gene expression follows in nonapoptotic luteal cells; 2) monocytes/macrophages are chemoattracted by MCP-1 toward corpora lutea containing apoptotic luteal cells; and 3) monocytes/macrophages invade corpora lutea and eliminate apoptotic luteal cells by phagocytosis.  相似文献   

18.
Several lines of evidence suggest that follicular granulosa cells give rise to the large luteal cells of the corpus luteum in the sheep. To further investigate this suggestion, numbers of granulosa cells in preovulatory follicles were estimated by morphometric methods for comparison with a previous estimate of numbers of large luteal cells (9.6 +/- 0.9 x 10(6)). Preovulatory follicles from five Corriedale ewes were obtained after synchronization of the oestrous cycle with the prostaglandin analogue cloprostenol. Morphometry was undertaken using light microscopy of plastic-embedded tissue sectioned at 1 micron. Mitotic index in the membrana granulosa was 0.05 +/- s.e.m. 0.05%. Mean follicular diameter was 6.25 +/- 0.25 mm and there were 7.68 +/- 0.53 x 10(6) granulosa cells per follicle. These results demonstrate a similarity between the number of granulosa cells per follicle and the number of large luteal cells per corpus luteum and thus support the hypothesis that large luteal cells are derived from granulosa cells.  相似文献   

19.
20.
Bilaterally ovariectomized ewes were used to investigate the effect of systemic administration (i.v.) of charcoal-treated aqueous luteal extracts from ovine corpora lutea on plasma concentrations of pituitary gonadotrophins. Jugular blood samples were taken every 15 min at least 5 h before (control period) and 5 h after (treatment period) injection. In Expt 1, the administration of luteal extract from corpora lutea of days 70-76 of pregnancy, but not of the extract prepared from muscular tissue, resulted in a significant decrease of mean concentrations of luteinizing hormone (LH) (P < 0.02) and frequency of LH pulses (P < 0.01). Plasma follicle-stimulating hormone (FSH) concentrations were not affected by injections of either extract. These findings provide the first demonstration of the presence of a nonsteroidal factor in the corpus luteum of midpregnancy that selectively suppresses the secretion of LH. In Expt 2, mean concentrations of LH and FSH and frequency of LH pulses were unaffected by injections of luteal extracts from ovine corpora lutea of days 10-12 of the oestrous cycle or day 15 of pregnancy. These data suggest that some factor(s), probably from the fetoplacental endocrine unit, is required to ensure the production of a significant quantity of the luteal LH-inhibiting factor after day 15 of pregnancy. In Expt 3, treatment of luteal extract from corpora lutea of day 70 of pregnancy with proteolytic enzymes destroyed the LH-inhibiting activity, suggesting the proteic nature of the luteal LH-inhibiting factor. In Expt 4, plasma concentrations of LH were not affected by injection of charcoal-treated extract prepared from fetal cotyledonary tissue of days 110-120 of pregnancy suggesting that the LH-inhibiting factor exclusively originates from the corpus luteum during pregnancy. These experiments provide the first direct evidence for the existence of a potent nonsteroidal factor of luteal origin that specifically inhibits pulsatile secretion of LH, without influencing FSH release in female animals. We propose the term LH-release-inhibiting factor (LH-RIF) to describe this activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号