首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Effects of different visual conditions on the vertical posture maintenance were compared in subjects standing on a firm or compliant surface. These visual conditions included a motionless visual environment (MVE), eyes-closed condition (EC), and a virtual visual environment (VVE). The VVE consisted of two planes: the foreground and background. The foreground displayed a room window with adjacent walls, and the background was represented by an aqueduct with the adjacent landscape. The VVE was destabilized by inducing either the cophased or the antiphased relation between the foreground of the visual scene and the body sway. We evaluated changes in the amplitude spectra of two elementary variables calculated from the trajectories of the plantar center of pressure (CoP) displacements in the anteroposterior and lateral directions, namely, the trajectories for the center of gravity projections on the support (the CG variable) and the differences between the CoP and CG trajectories (the CoP–CG variable).The CG trajectory was considered as a controlled variable, and the difference between the CoP and CG trajectories were considered as a variable related to the body acceleration and reflecting changes in the resultant stiffness in ankle joints. The rootmean-square (RMS) values for the spectra of both variables calculated from the body sway in the anteroposterior direction in standing on a firm support decreased proportionately with antiphased relation between the foreground and the body sway and increased with the cophased relation, compared with the RMS calculated for the MVE conditions. RMS for the spectra of the CG variable in the cophased relation were nearly the same, as in standing with eyes closed (EC), while the RMS for the spectra of the CoP–CG variable were significantly less than with EC. The body sway during standing on a compliant support significantly increased in both the anteroposterior and the lateral directions under all visual conditions. RMS for the spectra of both variables with EC increased considerably higher than in the cophased relation. Furthermore, the RMS for the spectra of the CG variable calculated from the body sway in the lateral direction on a compliant support was substantially higher in the antiphased relation than in the cophased relation, whereas the RMS for the spectra of the CoP–CG variable under both conditions had similar values. The analysis of body sway and the results under some visual conditions have shown that the amplitude characteristics of the CG and CoP–CG variables changed not always proportionately with the passage from standing on a firm support to a compliant support. It is suggested that the found disproportion of changes in these two variables is probably associated with the contribution of another additional factor to the process of postural control, the passive elastic component of musculo-articular stiffness generated by fascial-tendon tissues.  相似文献   

2.
 We investigate the temporal coordination of human gait and posture and infer the nature of their coupling. Participants viewed a sinusoidally oscillating visual display which induced medial-lateral postural sway during treadmill walking, while display frequency was varied (0.075–1.025 Hz). First, postural responses exhibited the usual low-pass characteristic but with an additional resonance peak near the preferred stride frequency, although shifted downward by 0.12 Hz; this provides evidence of a coupling from gait to posture. Second, the step cycle adapted to mode lock with the visual driver and postural sway, as well as displaying instances of intermittency (slipping in and out of phase) and quasiperiodicity (phase wandering); this provides evidence of a coupling from posture to gait. We observed a spectrum of integer mode locks, including a large 1:1 trapping region about the stride frequency and superharmonic entrainment (stride frequency > driver frequency) at lower driver frequencies. A coupled-oscillator model that incorporates a novel parametric coupling from posture to the gait “stiffness” term reproduces these features of the data, including the resonance peak shift. Biological coordination patterns may thus emerge naturally as properties of a system of appropriately coupled oscillators. Received: 23 June 1999 / Accepted in revised form: 10 January 2001  相似文献   

3.
Certain aspects of balance control change with age, resulting in a slight postural instability. We examined healthy subjects between 20-82 years of age during the quiet stance under static conditions: at stance on a firm surface and/or on a compliant surface with eyes either open or closed. Body sway was evaluated from centre of foot pressure (CoP) positions during a 50 sec interval. The seven CoP parameters were evaluated to assess quiet stance and were analyzed in three age groups: juniors, middle-aged and seniors. The regression analysis showed evident increase of body sway over 60 years of age. We found that CoP parameters were significantly different when comparing juniors and seniors in all static conditions. The most sensitive view on postural steadiness during quiet stance was provided by CoP amplitude and velocity in AP direction and root mean square (RMS) of statokinesigram. New physiological ranges of RMS parameter in each condition for each age group of healthy subjects were determined. Our results showed that CoP data from force platform in quiet stance may indicate small balance impairment due to age. The determined physiological ranges of RMS will be useful for better distinguishing between small postural instability due to aging in contrast to pathological processes in the human postural control.  相似文献   

4.
In order to determine the type of somatosensory information for postural control that is most affected by neuropathy, we compared the relative effects of three methods of sway-referencing the surface in a group of subjects with profound loss of somatosensory function associated with sensory polyneuropathy from diabetes with age-matched control subjects. Sway-referencing disrupted somatosensory feedback for postural control by servo-controlling the dorsi- and plantar-flexion rotation of the support surface in proportion to anterior-posterior excursion of (1) ankle angle, (2) center of body mass (CoM) angle or (3) filtered center of pressure (CoP). Postural sway in subjects with somatosensory loss was significantly larger than normal on a firm surface but not on the sway-referenced surfaces, suggesting that sway-referencing disrupts somatosensory information for postural control already disrupted by neuropathy. Control subjects standing on any sway-referenced surface swayed significantly more than neuropathy subjects who stood on a firm surface, suggesting that sway-referencing disrupts more somatosensory information than disrupted by severe neuropathy. CoP sway-referencing was less sensitive than ankle or CoM sway-referencing for distinguishing postural sway in subjects with somatosensory loss from age-matched control subjects. Given that filtered CoP sway-referencing disrupts the ability to utilize somatosensory information related to surface reactive force to a greater extent than the other two methods of sway-referencing, then these results support the hypothesis that subjects with diabetic peripheral neuropathy have lost more CoP information, than ankle or CoM angle information, for controlling postural sway in stance.  相似文献   

5.
In order to determine the type of somatosensory information for postural control that is most affected by neuropathy, we compared the relative effects of three methods of sway-referencing the surface in a group of subjects with profound loss of somatosensory function associated with sensory polyneuropathy from diabetes with age-matched control subjects. Sway-referencing disrupted somatosensory feedback for postural control by servo-controlling the dorsi- and plantar-flexion rotation of the support surface in proportion to anterior-posterior excursion of (1) ankle angle, (2) center of body mass (CoM) angle or (3) filtered center of pressure (CoP). Postural sway in subjects with somatosensory loss was significantly larger than normal on a firm surface but not on the sway-referenced surfaces, suggesting that sway-referencing disrupts somatosensory information for postural control already disrupted by neuropathy. Control subjects standing on any sway-referenced surface swayed significantly more than neuropathy subjects who stood on a firm surface, suggesting that sway-referencing disrupts more somatosensory information than disrupted by severe neuropathy. CoP sway-referencing was less sensitive than ankle or CoM sway-referencing for distinguishing postural sway in subjects with somatosensory loss from age-matched control subjects. Given that filtered CoP sway-referencing disrupts the ability to utilize somatosensory information related to surface reactive force to a greater extent than the other two methods of sway-referencing, then these results support the hypothesis that subjects with diabetic peripheral neuropathy have lost more CoP information, than ankle or CoM angle information, for controlling postural sway in stance.  相似文献   

6.
Visually-induced illusions of self-motion (vection) can be compelling for some people, but they are subject to large individual variations in strength. Do these variations depend, at least in part, on the extent to which people rely on vision to maintain their postural stability? We investigated by comparing physical posture measures to subjective vection ratings. Using a Bertec balance plate in a brightly-lit room, we measured 13 participants'' excursions of the centre of foot pressure (CoP) over a 60-second period with eyes open and with eyes closed during quiet stance. Subsequently, we collected vection strength ratings for large optic flow displays while seated, using both verbal ratings and online throttle measures. We also collected measures of postural sway (changes in anterior-posterior CoP) in response to the same visual motion stimuli while standing on the plate. The magnitude of standing sway in response to expanding optic flow (in comparison to blank fixation periods) was predictive of both verbal and throttle measures for seated vection. In addition, the ratio between eyes-open and eyes-closed CoP excursions during quiet stance (using the area of postural sway) significantly predicted seated vection for both measures. Interestingly, these relationships were weaker for contracting optic flow displays, though these produced both stronger vection and more sway. Next we used a non-linear analysis (recurrence quantification analysis, RQA) of the fluctuations in anterior-posterior position during quiet stance (both with eyes closed and eyes open); this was a much stronger predictor of seated vection for both expanding and contracting stimuli. Given the complex multisensory integration involved in postural control, our study adds to the growing evidence that non-linear measures drawn from complexity theory may provide a more informative measure of postural sway than the conventional linear measures.  相似文献   

7.
Activity of many physiological subsystems has a well-expressed rhythmic character. Often, a dependency between physiological rhythms is established due to interaction between the corresponding subsystems. Traditional methods of data analysis allow one to quantify the strength of interaction but not the causal interrelation that is indispensable for understanding the mechanisms of interaction. Here we present a recently developed method for quantification of coupling direction and apply it to an important problem. Namely, we study the mutual influence of respiratory and cardiovascular rhythms in healthy newborns within the first 6 mo of life in quiet and active sleep. We find an age-related change of the coupling direction: the interaction is nearly symmetric during the first days and becomes practically unidirectional (from respiration to heart rhythm) at the age of 6 mo. Next, we show that the direction of interaction is mainly determined by respiratory frequency. If the latter is less than approximately 0.6 Hz, the interaction occurs dominantly from respiration to heart. With higher respiratory frequencies that only occur at very young ages, the dominating direction is less pronounced or even abolished. The observed dependencies are not related to sleep stage, suggesting that the coupling direction is determined by system-inherent dynamical processes, rather than by functional modulations. The directional analysis may be applied to other interacting narrow band oscillatory systems, e.g., in the central nervous system. Thus it is an important step forward in revealing and understanding causal mechanisms of interactions.  相似文献   

8.
Functional interaction was studied between the subsystems that ensure autonomic control of the heart rate (HR) and blood pressure (BP) and give rise to 0.1-Hz oscillations in R-R intervals (RRI) and photoplethysmogram (PPG). Twenty-five recordings were obtained from 18- to 32-year-old healthy persons (six women and nineteen men). The RRI and PPG were recorded simultaneously while the respiration rate of a subject in the sitting position increased linearly from 0.05 Hz to 0.25 Hz within 25 min. Phase and frequency locking of 0.1-Hz oscillations by breathing proved to be possible in both RRI and PPG. The intervals of phase and frequency locking of oscillations by respiration differed in duration and relative position. These distinctions suggest that the mechanisms of autonomic 0.1-Hz control of HR and BP are functionally independent.  相似文献   

9.
Affective facial expressions are potent social cues that can induce relevant physiological changes, as well as behavioral dispositions in the observer. Previous studies have revealed that angry faces induced significant reductions in body sway as compared with neutral and happy faces, reflecting an avoidance behavioral tendency as freezing. The expression of pain is usually considered an unpleasant stimulus, but also a relevant cue for delivering effective care and social support. Nevertheless, there are few data about behavioral dispositions elicited by the observation of pain expressions in others. The aim of the present research was to evaluate approach–avoidance tendencies by using video recordings of postural body sway when participants were standing and observing facial expressions of pain, happy and neutral. We hypothesized that although pain faces would be rated as more unpleasant than the other faces, they would provoke significant changes in postural body sway as compared to neutral facial expressions. Forty healthy female volunteers (mean age 25) participated in the study. Amplitude of forward movements and backward movements in the anterior-posterior and medial-lateral axes were obtained. Statistical analyses revealed that pain faces were the most unpleasant stimuli, and that both happy and pain faces were more arousing than neutral ones. Happy and pain faces also elicited greater amplitude of body sway in the anterior-posterior axes as compared with neutral faces. In addition, significant positive correlations were found between body sway elicited by pain faces and pleasantness and empathic ratings, suggesting that changes in postural body sway elicited by pain faces might be associated with approach and cooperative behavioral responses.  相似文献   

10.
Body lean response to bilateral vibrations of soleus muscles were investigated in order to understand the influence of proprioceptive input from lower leg in human stance control. Proprioceptive stimulation was applied to 17 healthy subjects by two vibrators placed on the soleus muscles. Frequency and amplitude of vibration were 60 Hz and 1 mm, respectively. Vibration was applied after a 30 s of baseline. The vibration duration of 10, 20, 30 s respectively was used with following 30 s rest. Subjects stood on the force platform with eyes closed. Postural responses were characterized by center of pressure (CoP) displacements in the anterior-posterior (AP) direction. The CoP-AP shifts as well as their amplitudes and velocities were analyzed before, during and after vibration. Vibration of soleus muscles gradually increased backward body tilts. There was a clear dependence of the magnitude of final CoP shift on the duration of vibration. The amplitude and velocity of body sway increased during vibration and amplitude was significantly modulated by duration of vibration as well. Comparison of amplitude and velocity of body sway before and after vibration showed significant post-effects. Presented findings showed that somatosensory stimulation has a long-term, direction-specific influence on the control of postural orientation during stance. Further, the proprioceptive input altered by soleus muscles vibration showed significant changes in postural equilibrium during period of vibration with interesting post-effects also.  相似文献   

11.
The influence of light passive contact of the forearm with a pliable external object (flexible plate) on the maintenance of upright posture was studied in healthy subjects in several conditions, with the eyes closed and on immersion in a virtual visual environment (VVE). The visual environment was either stable or unstable as a result of a synphase (SP) or antiphase (AP) association between the environment and body sway. The posture maintenance analysis focused on estimating the amplitude and frequency characteristics of two elementary variables, which were calculated from the foot center of pressure (CoP) trajectories in the mediolateral and anteroposterior directions. The variables were trajectory of the vertical projection of the center of gravity (variable CG) and difference between the CoP and CG trajectories (variable CoP–CG). In both the absence and presence of passive tactile contact, the root mean square (RMS) values of the oscillation spectra of the two variables were the lowest in the stable visual environment and in the case of the antiphase association of the environment with body sways and the highest in the cases of the synphase association and standing with the eyes closed. Passive contact decreased body sways in both directions, and the RMSs of the spectra of the two variables decreased in all visual conditions. A greater decrease in RMS was observed for the CG variable. Body sways changed not only in amplitude, but also in frequency. Tactile contact increased the median frequencies (MFs) of the CG variable spectra calculated from the anteroposterior and mediolateral body sways. In contrast, a significant increase in MFs calculated for the CoP–CG variable was observed only for anteroposterior body sways. The results showed that passive contact of a forearm with a pliable external object, which does not provide a mechanical support for the subject, significantly improves the maintenance of the upright posture even in an unstable visual environment.  相似文献   

12.
The study investigated the effects of an unilateral ankle muscle fatigue onto independent postural control parameters including the trajectories of the estimated resultant CoP (CoPres) and his components: the centre of gravity (CG) and CoP–CG trajectories.Nine healthy men realized series of 10 toe-lift immediately followed by 10 knee flexions until exhaustion with one (Ex) leg. Maximal isometric voluntary contractions, postural sway measures of each leg, and muscular activities of the ankle muscles were recorded before and immediately after the fatiguing exercise.As expected, the latter induced a decrease in maximal voluntary peak force associated with a greater variability of the relative contribution of each leg on the CoPres, enhanced all postural parameters of the non-exercised leg. A significant decreased of the tibialis anterior EMG activity for the Ex leg and an increased one for the NoEx leg. Finally, following unilateral fatigue, the body sway destabilisation seemed to occur only along the medio-lateral (ML) axis.The enhanced and greater variability of the variance along ML axis might be explained by the recourse at the loading–unloading strategy choice and suggests a central attempt to compensate for pain sensation.  相似文献   

13.
The purpose of this study was to determine the effect of a 4-week balance training program on specified functional tasks. Thirty-six subjects (age = 22.7 +/- 2.10 years; height = 168.30 +/- 9.55 cm; weight = 71.15 +/- 16.40 kg) were randomly placed into control (C; n = 19) and experimental groups (Tx; n = 17). The Tx group trained using a commercially available balance training device (BOSU). Postural limits (displacement and sway) and functional task (time on ball, shuttle run, and vertical jump) were assessed during a pretest (T1), a posttest (T2), and 2 weeks posttraining (T3). Multivariate repeated measures analysis (alpha = 0.05) revealed significant differences in time on ball, shuttle run, total sway, and fore/aft displacement after the exercise intervention (T2). T3 assessment revealed that total sway and time on ball remained controlled; however, no other measures were retained. Balance training improved performance of selected sport-related activities and postural control measures, although it is unclear whether the effect of training would transfer to general functional enhancement.  相似文献   

14.
To investigate to time course of sensory-motor adaptation to microgravity, we tested spatially-directed voluntary head movements before, during and after short spaceflight. We also tested the re-adaptation of postural responses to sensory stimulation after space flight. The cosmonaut performed in microgravity six cycles of voluntary head rotation in pitch, roll and yaw directions. During the first days of weightlessness the angular velocity of head movements increased. Over the next days of microgravity the velocity of head movements gradually decreased. On landing day a significant decrease of head rotation velocity was observed compared to the head movement velocity before spaceflight. Re-adaptation to Earth condition measured by body sway on soft support showed similar time course, but re-adaptation measured by postural responses to vestibular galvanic stimulation was prolonged. These results showed that the angular velocity of aimed head movements of cosmonauts is a good indicator of sensory-motor adaptation in altered gravity conditions.  相似文献   

15.
16.
The purpose of the study was to investigate the effects of sleep deprivation (SD) in adaptation of the coupling between visual information and body sway in young adults’ postural control due to changes in optic flow characteristics. Fifteen young adults were kept awake for approximately 25 hours and formed the SD group, while fifteen adults who slept normally the night before the experiment participated as part of the control group. All participants stood as still as possible in a moving room before and after being exposed to one trial with higher amplitude and velocity of room movement. Postural performance and the coupling between visual information, provided by a moving room, and body sway were examined. Results showed that after an abrupt change in visual cues, larger amplitude, and higher velocity of the room, the influence of room motion on body sway was decreased in both groups. However, such a decrease was less pronounced in sleep deprived as compared to control subjects. Sleep deprived adults were able to adapt motor responses to the environmental change provided by the increase in room motion amplitude. Nevertheless, they were not as efficient as control subjects in doing so, which demonstrates that SD impairs the ability to adapt sensorimotor coupling while controlling posture when a perturbation occurs.  相似文献   

17.
Abstract

This study aimed to investigate the influence of three stimulating surfaces based on center of pressure (CoP), anteroposterior sway velocity (VA/P), and medio-lateral sway velocity (VM/L) of 40 elderly subjects. CoP and VM/L showed a significant decrease in all visual conditions only in the stimulating surface whereas VA/P showed a significant decrease only on the same surface with eyes open. Results confirm the importance of multisensory stimulation in postural control in the elderly.  相似文献   

18.
To determine expertise-related differences in performance and movement variability during the execution of closed skill codified tasks, we quantitatively assessed the 3D hand movements of two groups of jugglers with different levels of expertise: six advanced (who could juggle up to 7 balls) and six intermediate jugglers (who could juggle at most with 5 balls).All participants performed three trials for each 3-, 4- and 5-ball juggling schemes. The coordinates of the middle fingers were recorded by an optoelectronic motion analyzer (sampling rate 120 Hz), and were analyzed and compared between groups, number of juggled balls and the spatial decomposition of hand trajectories.The higher the level of expertise, the more stable the hand movements, as the number of juggled balls increased. Advanced jugglers also exhibited lower execution frequencies than intermediate jugglers in each scheme.When the level of difficulty rises, a slower play may be one of the factors accounting for the capability of the advanced jugglers to limit movement variability at the end-effector, and juggle a higher number of balls.  相似文献   

19.
IntroductionAdequate neuromuscular control of the lumbar spine is required to prevent lumbar injuries. A trunk postural stability test has been proposed earlier, using a chair wobbling on a central pivot and four springs with adjustable positions to modulate task difficulty. An inertial sensor is fixed on the chair to measure postural sway. The aim of this study is to assess the criterion validity and between-day reliability of the calibration and testing components.MethodsThirty six subjects (with and without low back pain) followed a calibration procedure, four practice trials and three 60-s trials on 2 days. The criterion validity of the inertial sensor was tested against an optoelectronic system and a force platform. The reliability of 38 body sway measures obtained from the inertial sensor angular measures was estimated.ResultsThe inertial sensor led to valid estimates of postural sway. The reliability of the calibration procedure was moderate. Practically no learning effect was detected except for a few body sway measures in patients with CLBP. Three 60-s trials provided acceptable reliability for approximately half of the body sway measures, although this is more difficult to achieve in patients with CLBP.DiscussionThe use of an easy to use inertial sensor led to valid measures of postural sway. A number of body sway measures were identified as reliable tools for individual follow-ups but inter-subject comparisons were anticipated as more difficult when patients with CLBP are involved.  相似文献   

20.
In order to obtain new insight into the control of balance during arm raising movements in bipedal stance, we performed a biomechanical analysis of kinematics and dynamical aspects of arm raising movements by combining experimental work, large-scale models of the body, and techniques simulating human behavior. A comparison between experimental and simulated joint kinematics showed that the minimum torque change model yielded realistic trajectories. We then performed an analysis based on computer simulations. Since keeping the center of pressure (CoP) and the projection of the center of mass (CoM) inside the support area is essential for equilibrium, we modeled an arm raising movement where displacement of one or the other variable is limited. For this optimization model, the effects of adding equilibrium constraints on movement trajectories were investigated. The results show that: (a) the choice of the regulated variable influences the strategy adopted by the system and (b) the system was not able to regulate the CoM for very fast movements without compromising its balance. Consequently, we suggest that the system is able to maintain balance while raising the arm by only controlling the CoP. This may be done mainly by using hip mechanisms and controlling net ankle torque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号