首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
Ai P  Zheng JQ 《生理科学进展》2005,36(2):125-129
作为先进的细胞电生理技术,膜片钳一直被奉为研究离子通道的“金标准”。应用膜片钳技术可以证实细胞膜上离子通道的存在并能对其电生理特性、分子结构、药物作用机制等进行深入的研究。基因组学、蛋白质组学研究表明,以离子通道为靶标的药物研究在未来具有很大的发展空间。为了突破由于筛选技术所造成的针对离子通道为靶标的药物研发的瓶颈,近年来,对膜片钳技术进行了改进以适合药物高通量筛选的需求,由此产生了一些新的技术。本文就最近几年膜片钳技术的新进展及其在药物高通量筛选中的应用进行了综述。  相似文献   

2.
细胞电生理技术在昆虫抗药性研究中的应用   总被引:4,自引:0,他引:4  
贺秉军  刘安西 《昆虫学报》2001,44(4):574-581
害虫几乎对所有化学农药及Bt等生物农药都产生了抗性。离子通道是多种杀虫剂的作用靶,因此作为研究离子通道基本手段的电压钳与膜片钳技术在害虫抗性检测与抗性机理研究中越来越受到重视。该文综述了细胞电生理技术在害虫抗性机理、杀虫剂作用机理以及药物筛选中的应用。  相似文献   

3.
膜片钳技术在昆虫毒理学研究中的应用   总被引:1,自引:0,他引:1  
薛超彬  罗万春 《昆虫知识》2003,40(6):496-499
膜片钳技术是现代电生理研究的基本方法 ,它以细胞膜上的离子通道为研究对象。离子通道是多种杀虫剂的作用靶 ,因此作为研究离子通道基本手段的膜片钳技术在药剂神经性作用机理研究中越来越受到重视。该文综述了膜片钳技术的基本原理及其在昆虫毒理学中应用的最新研究进展  相似文献   

4.
《生理通讯》2008,27(1):35
全自动动膜片钳技术是离子通道检测技术的最新进展,它具有直接性、高信息量及高精确性的特点,近来在多个方面做出了新的突破,如高的实验通量表现,较高的自动化程度、良好的封接质量、微量加样等。目前,该技术在以离子通道为靶标的药物研发,药物毒理测试以及新药筛选等方面有广阔的应用前景。  相似文献   

5.
膜片钳技术在动脉粥样硬化研究中的应用   总被引:1,自引:0,他引:1  
膜片钳技术是一种先进的电生理技术,在生命科学研究中已得到了广泛的应用.最近几年已把它运用于研究动脉粥样硬化血管平滑肌细胞离子通道电生理特性的改变.研究发现血管平滑肌细胞的凋亡与K+通道活动增加有关,在动脉粥样硬化发生与发展过程中大电导型钙激活钾通道起着重要的功能作用.某些药物影响动脉粥样硬化血管平滑肌细胞离子通道而发挥作用.膜片钳技术给动脉粥样硬化发病机理研究带来了新的亮点.  相似文献   

6.
精子发生是个复杂的细胞事件,为了使这一事件有序的进行,生精细胞分裂和分化必须在信号调控下精确地进行。精子的离子通道在调节其离子平衡和重要的生理过程(精子能动性、顶体反应、对卵子的趋向性等)中都起了关键性的作用。离子通道表达水平或功能的改变都直接影响人类及其他动物的雄性生育能力。对离子通道的研究最直接的方法是膜片钳技术,但由于精子直径小,又是末端分化细胞,关于其电生理学的研究报道较少。该文介绍了精子离子通道的重要生理功能和电生理特征,同时分析了膜片钳技术在精子离子通道研究中的重要价值。  相似文献   

7.
荧光膜片钳(patch-clamp fluorometry,PCF)是将离子通道蛋白局部的构象变化和门控紧密结合,实时记录同一膜片上离子通道的荧光和电流信号的创新型生物物理学技术,其特点是将经典的膜片钳和现代光学记录结合起来,实时同步完美呈现离子通道执行其功能时的蛋白质构象信息.与研究结构的X射线和冰冻电镜不同,荧光膜片钳提供离子通道处于真实细胞膜生理环境并执行功能的实时动态结构信息.随着新的光学技术、显微成像技术、图像分析技术等的进步,大大地扩展了荧光膜片钳技术的记录范围、分辨精度及敏感度,使研究者以前所未有的时空分辨率来实时观察和记录离子通道蛋白的结构变化.  相似文献   

8.
《生命科学研究》2017,(3):251-256
随着细胞电生理学的快速发展,膜片钳技术成为研究离子通道最重要的手段。它被广泛地应用于细胞生物学、分子生物学、病理学、药理学、医学等领域,其中,膜片钳技术在神经科学中的应用,是一场具有重大意义的变革。  相似文献   

9.
细胞膜表面精细结构中的离子通道具有重要的生理功能。为了克服目前利用光学显微镜进行微电极定位的传统膜片钳技术分辨率的不足,本实验室将扫描离子电导显微镜技术(scanning ion conductance microscopy,SICM)与商用膜片钳技术相结合,构建了基于SICM负反馈扫描控制技术的高分辨率膜片钳技术。我们首先运用SICM负反馈技术控制纳米尺度玻璃微探针进行活体细胞表面的非接触扫描,获得细胞膜表面微结构的高分辨率成像,而后运用SICM负反馈控制技术操控该微探针在细胞膜表面非接触地移动并将其精确定位于扫描成像中感兴趣的膜表面纳米尺度微结构上方,最后利用该微探针作为膜片钳记录电极实现对此微结构的高分辨率电生理信号记录。为了检验该技术实现高分辨率离子通道记录的能力,分别在活体单层膜犬肾上皮(MDCK)细胞膜的微绒毛、细胞间的紧密连接等纳米尺度微结构上进行了细胞贴附式离子通道记录,结果显示MDCK细胞膜微绒毛的离子通道在钳制电压(pipette holding potential)为-100、-60、-40、0、+40、+60、+100mV条件下处于开放状态,而MDCK细胞间的紧密连接处在钳制电压为-100、-40、0、+40、+100mV条件下未检出有离子通道开放动作。结果提示,我们构建的高分辨率膜片钳技术实现了微探针的准确定位及特定纳米尺度微结构上的高分辨率膜片钳记录,为活体生物样品表面离子通道的空间分布及其功能研究提供了一种有效的工具。  相似文献   

10.
本文旨在建立一种可同步观察细胞内信号分子和细胞膜离子通道变化之间相互关系的实时研究方法。联合应用激光扫描共聚焦显微镜(laser scanning confocal microscopy,LSCM)显微成像技术和全细胞穿孔膜片钳技术,在急性酶分离的小鼠脑动脉平滑肌细胞上同步记录自发性瞬时外向电流(spontaneous transient outward currents,STOCs)和细胞内的钙瞬变。在全细胞模式膜片钳记录平滑肌细胞膜钾电流的同时,LSCM可准确记录到胞浆内出现的钙瞬变。此技术对于从分子水平揭示细胞内信号转导过程和离子通道相关疾病的机制有重要意义。  相似文献   

11.
Patch clamp electrophysiology is the main technique to study mechanosensitive ion channels (MSCs), however, conventional patch clamping is laborious and success and output depends on the skills of the operator. Even though automated patch systems solve these problems for other ion channels, they could not be applied to MSCs. Here, we report on activation and single channel analysis of a bacterial mechanosensitive ion channel using an automated patch clamp system. With the automated system, we could patch not only giant unilamellar liposomes but also giant Escherichia coli (E. coli) spheroplasts. The tension sensitivity and channel kinetics data obtained in the automated system were in good agreement with that obtained from the conventional patch clamp. The findings will pave the way to high throughput fundamental and drug screening studies on mechanosensitive ion channels.  相似文献   

12.
Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.  相似文献   

13.
Summary Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts ofVicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. “Laserassisted” patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.  相似文献   

14.
A variant of the whole-cell patch clamp technique is described which allows measurement of whole-cell ionic currents in small cells while minimizing cell dialysis with the pipette solution. The technique involves the application of negative pressure to the inside of small (less than 1 micron) tip diameter pipettes placed on the cell surface to achieve high resistance seals and membrane rupture. The technique has been used successfully in a variety of different types of cells to study membrane currents carried by Ca and K, currents generated by exchange carriers as well as electrical coupling between cells. Overall, the technique seems well suited for the study of ionic currents in small cells, and provides an alternative to conventional patch clamping techniques which necessitate intracellular dialysis.  相似文献   

15.
Summary A variant of the whole-cell patch clamp technique is described which allows measurement of whole-cell ionic currents in small cells while minimizing cell dialysis with the pipette solution. The technique involves the application of negative pressure to the inside of small (< 1 µm) tip diameter pipettes placed on the cell surface to achieve high resistance seals and membrane rupture. The technique has been used successfully in a variety of different types of cells to study membrane currents carried by Ca and K, currents generated by exchange carriers as well as electrical coupling between cells. Overall, the technique seems well suited for the study of ionic currents in small cells, and provides an alternative to conventional patch clamping techniques which necessitate intracellular dialysis.  相似文献   

16.
Whole cell patch clamp recording performed on a planar glass chip   总被引:6,自引:0,他引:6       下载免费PDF全文
The state of the art technology for the study of ion channels is the patch clamp technique. Ion channels mediate electrical current flow, have crucial roles in cellular physiology, and are important drug targets. The most popular (whole cell) variant of the technique detects the ensemble current over the entire cell membrane. Patch clamping is still a laborious process, requiring a skilled experimenter to micromanipulate a glass pipette under a microscope to record from one cell at a time. Here we report on a planar, microstructured quartz chip for whole cell patch clamp measurements without micromanipulation or visual control. A quartz substrate of 200 microm thickness is perforated by wet etching techniques resulting in apertures with diameters of approximately 1 microm. The apertures replace the tip of glass pipettes commonly used for patch clamp recording. Cells are positioned onto the apertures from suspension by application of suction. Whole cell recordings from different cell types (CHO, N1E-115 neuroblastoma) are performed with microstructured chips studying K(+) channels and voltage gated Ca(2+) channels.  相似文献   

17.
Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.  相似文献   

18.
The patch clamp technique, developed in late 1970s, started a new period of experimental cardiac electrophysiology enabling measurement of ionic currents on isolated cardiomyocytes down to the level of single channels. Since that time, the technique has been substantially improved by development of several upgraded modifications providing so far unavailable data (e.g. action potential clamp, dynamic clamp, high-resolution scanning patch clamp), or facilitating the patch clamp technique by increasing its efficiency (planar patch clamp, automated patch clamp). The current review summarizes the leading new patch clamp based techniques used in cardiac cellular electrophysiology, their principles and prominent related papers.  相似文献   

19.
The nonradioactive Rb+ efflux assay has become a reliable and efficient high-throughput hERG screening method, but it is limited by its low sensitivity for potent hERG blockers. Using the patch clamp technique, the authors found that the low sensitivity is due in part to the use of Rb+ as the permeating cation in the assay. The affinities of the drugs measured by patch clamp technique in the presence of Rb+ were 3- to 10-fold lower than when measured by the same method in the presence of K+ ions. The apparent affinity of the drugs decreased even further when monitored by the Rb+ efflux assay. It was also observed that Rb+ had minimal effects on the activation properties of channels while there was a significant change in the half-inactivation potential. This voltage shift reduces hERG channel inactivation at efflux assay potentials, and will reduce the affinity of hERG-blocking drugs that bind to inactivated states of the channel. In combination with the effects of elevated extracellular ion concentrations, it is likely that Rb+ modulation of hERG channel inactivation is largely responsible for the reduced drug potencies observed in the Rb+ efflux assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号