首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient method to grow Escherichia coli W to high cell concentrations on the pilot scale is described and discussed. The method involves growth linked introduction of glucose; and ammonia to the culture, sparing with oxygen, and maintenance of aerobic conditions by gradually decreasing the temperature in the culture in order to keep the oxygen demand within the limits of the capacity of supply. Under these conditions the linear rate of cell mass production is actually the result of exponential growth with a gradually decreasing growth-rate constant. About 10 kg packed cells were produced in a 50 liter working-volume fermentor in one run of 13 hr. The concentration of the cells at the end of the growth was about 47 g dry cells/liter. The expenditure for nutrients was minimal and the controls were of simple automatic nature. From the determined yield constants for glucose, nitrogen, phosphorus, and oxygen it may be inferred that the cells grown by this method are similar to those grown exponentially at constant temperature.  相似文献   

2.
Escherichia coli B, Escherichia coli MRE 600, Escherichia coli K 12-3300, Pseudomonas fluorescens, and Aerobacter aerogenes were grown exponentially in a bench-scale fermentor to cell concentrations in the range of 20 to 41 g dry cells/liter at 30°C and 30 to 55 g dry cells/liter at 25°C. The high cell concentrations were achieved in a growth system previously described for growth of Escherichia coli W (Biotechnol. Bioeng., 16 , 933 (1974); ibid. 17 , 227 (1975)). Various enzyme activity levels in the high-concentration cells were compared to those in cells grown in conventional low-density cultures. No significant differences were found. The culture supernatants were found to be essentially free of high-molecular weight metabolic or cell lysis products. Yield constants for glucose, nitrogen, oxygen, and phosphorus were also determined in the dense cultures and some of their relations to the growth conditions are discussed.  相似文献   

3.
The growth and citric acid production kinetics of Saccharomycopsis lipolytica on glucose are investigated in an aerated stirred fermentor. Cellular growth first proceeds exponentially until exhaustion of ammonia in the fermentation medium. Cells then continue to grow at a reduced rate with a concomitant decrease in intracellular nitrogen content. Citric and isocitric acid production starts at the end of the growth phase. During about 80 hr excretion proceeds at a constant rate of 0.7 g/liter/hr for citric acid and 0.1 g/liter/hr for isocitric acid. The final citric and isocitric acid concentrations are 95 and 10g/liter, respectively. During acid excretion cellular respiration accounts for 60 and 35% of consumed oxygen and glucose. Both acid and CO2 production rates follow a Michaelis–Menten-type dependence on oxygen concentration with Michaelis–Menten constants of 0.9 and 0.15 mg/liter for acid and CO2 productions, respectively.  相似文献   

4.
Little is known about the cellular physiology of Escherichia coli at high cell densities (e.g., greater than 50 g [dry cell weight] per liter), particularly in relation to the cellular response to different growth conditions. E. coli W3100 cultures were grown under identical physical and nutritional conditions, by using a computer-controlled fermentation system which maintains the glucose concentration at 0.5 g/liter, to high cell densities at pH values of 6.0, 6.5, 7.0, and 7.5. The data suggest a relationship between the pH of the environment and the amount of acetate excreted by the organism during growth. At pH values of 6.0 and 6.5, the acetate reached a concentration of 6 g/liter, whereas at pH 7.5, the acetate reached a concentration of 12 g/liter. Furthermore, at pH values of 6.0 to 7.0, the E. coli culture undergoes a dramatic metabolic switch in which oxygen and glucose consumption and CO2 evolution all temporarily decreased by 50 to 80%, with a concomitant initiation of acetate utilization. After a 30-min pause in which approximately 50% of the available acetate is consumed, the culture recovers and resumes consuming glucose and oxygen and producing acetate and CO2 at preswitch levels. During the switch period, the specific activity of isocitrate lyase typically increases approximately fourfold.  相似文献   

5.
Summary Zymomonas mobilis UQM 2716 was grown anaerobically in continuous culture (D = 0.1/h; 30° C) 3nder glucose or nitrogen limitation at pH 6.5 or 4.0. The rates of glucose consumption and ethanol production were lowest during glucose-limited growth at pH 6.5, but increased during growth at pH 4.0 or under nitrogen limitation, and were highest during nitrogen-limited growth at pH 4.0. The uncoupling agent CCCP substantially increased the rate of glucose consumption by glucose-limited cultures at pH 6.5, but had much less effect at pH 4.0. Washed cells also metabolised glucose rapidly, irrespective of the conditions under which the original cultures were grown, and the rates were variably increased by low pH and CCCP. Broken cells exhibited substantial ATPase activity, which was increased by growth at low pH. It was concluded that the fermentation rates of cultures growing under glucose or nitrogen limitation at pH 6.5, or under glucose limitation at pH 4.0, are determined by the rate at which energy is dissipated by various cellular activities (including growth, ATP-dependent proton extrusion for maintenance of the protonmotive force and the intracellular pH, and an essentially constitutive ATP-wasting reaction that only operates in the presence of excess glucose). During growth under nitrogen limitation at pH 4.0 the rate of energy dissipation is sufficiently high for the fermentation rate to be determined by the inherent catalytic activity of the catabolic pathway.Abbreviations CCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone - qG rate of glucose consumption (g glucose/g dry wt cells/h) - qE rate of ethanol production (g ethanol/g dry wt cells/h) - Y growth yield (g dry wt cells/g glucose) - D dilution rate Offprint requests to: C. W. Jones  相似文献   

6.
Seven different strains of Saccharomyces cerevisiae were tested for the ability to maintain their fermentative capacity during 24 h of carbon or nitrogen starvation. Starvation was imposed by transferring cells, exponentially growing in anaerobic batch cultures, to a defined growth medium lacking either a carbon or a nitrogen source. After 24 h of starvation, fermentative capacity was determined by addition of glucose and measurement of the resulting ethanol production rate. The results showed that 24 h of nitrogen starvation reduced the fermentative capacity by 70 to 95%, depending on the strain. Carbon starvation, on the other hand, provoked an almost complete loss of fermentative capacity in all of the strains tested. The absence of ethanol production following carbon starvation occurred even though the cells possessed a substantial glucose transport capacity. In fact, similar uptake capacities were recorded irrespective of whether the cells had been subjected to carbon or nitrogen starvation. Instead, the loss of fermentative capacity observed in carbon-starved cells was almost surely a result of energy deprivation. Carbon starvation drastically reduced the ATP content of the cells to values well below 0.1 μmol/g, while nitrogen-starved cells still contained approximately 6 μmol/g after 24 h of treatment. Addition of a small amount of glucose (0.1 g/liter at a cell density of 1.0 g/liter) at the initiation of starvation or use of stationary-phase instead of log-phase cells enabled the cells to preserve their fermentative capacity also during carbon starvation. The prerequisites for successful adaptation to starvation conditions are probably gradual nutrient depletion and access to energy during the adaptation period.  相似文献   

7.
We assessed the influence of various carbon concentrations and carbon-to-nitrogen (C:N) ratios on Colletotrichum truncatum NRRL 13737 conidium formation in submerged cultures grown in a basal salts medium containing various amounts of glucose and Casamino Acids. Under the nutritional conditions tested, the highest conidium concentrations were produced in media with carbon concentrations of 4.0 to 15.3 g/liter. High carbon concentrations (20.4 to 40.8 g/liter) inhibited sporulation and enhanced the formation of microsclerotiumlike hyphal masses. At all the carbon concentrations tested, a culture grown in a medium with a C:N ratio of 15:1 produced more conidia than cultures grown in media with C:N ratios of 40:1 or 5:1. While glucose exhaustion was often coincident with conidium formation, cultures containing residual glucose sporulated and those with high carbon concentrations (>25 g/liter) exhausted glucose without sporulation. Nitrogen source studies showed that the levels of C. truncatum NRRL 13737 conidiation were similar for all protein hydrolysates tested. Reduced conidiation occurred when amino acid and inorganic nitrogen sources were used. Of the nine carbon sources evaluated, acetate as the sole carbon source resulted in the lowest level of sporulation.  相似文献   

8.
A novel air separation system based on permeable membrane gas separation technology was used to cultivate Escherichia coli. The system fulfilled the dissolved oxygen requirements of a culture of E. coli grown on a glucose synthetic medium at a high and constant growth rate of 0.55 h-1. A biomass yield of 45 g (dry weight) per liter was achieved, and no by-product inhibition by acetate or CO2 was observed.  相似文献   

9.
R Fass  T R Clem    J Shiloach 《Applied microbiology》1989,55(5):1305-1307
A novel air separation system based on permeable membrane gas separation technology was used to cultivate Escherichia coli. The system fulfilled the dissolved oxygen requirements of a culture of E. coli grown on a glucose synthetic medium at a high and constant growth rate of 0.55 h-1. A biomass yield of 45 g (dry weight) per liter was achieved, and no by-product inhibition by acetate or CO2 was observed.  相似文献   

10.
Utilization of cellulose from waste paper by Myrothecium verrucaria   总被引:4,自引:0,他引:4  
Extensive screening studies on cellulolytic bacteria and fungi led to the selection of Myrothecium verrucaria as the organism producing the maximum rate of protein biosynthesis from ball-milled newspaper. Studies in aerated stirred-jar fermentors were carried out to determine the conditions for maximum protein synthesis rate and maximum final protein concentration. The optimum aeration rate was 250 to 374 mM of oxygen at 300 to 400 rpm stirring rate. The pH optimum was broad, from 3.9 to 6.5. Urea at 0.03% and yeast autolysate at 0.1% stimulated growth rate and protein production. The maximum rate of protein biosynthesis and the maximum protein yield were 0.3 g/liter/day and 1.42 g/liter, respectively, from medium G3 with 4% ball-milled newspaper. The final product, obtained by evaporation of the total culture, was 33.7 g from one liter of medium which originally contained 40 g of ball-milled newspaper and 11.3 g of other dissolved materials. The protein content of this final product was 3.3 g, calculated from total organic N × 6.25 or 1.42 g calculated from the biuret method. Both the synthesis rate and the final cell yield are below those obtainable by growing Fungi Imperfecti, yeasts or bacteria on soluble materials such as glucose.  相似文献   

11.
Seven different strains of Saccharomyces cerevisiae were tested for the ability to maintain their fermentative capacity during 24 h of carbon or nitrogen starvation. Starvation was imposed by transferring cells, exponentially growing in anaerobic batch cultures, to a defined growth medium lacking either a carbon or a nitrogen source. After 24 h of starvation, fermentative capacity was determined by addition of glucose and measurement of the resulting ethanol production rate. The results showed that 24 h of nitrogen starvation reduced the fermentative capacity by 70 to 95%, depending on the strain. Carbon starvation, on the other hand, provoked an almost complete loss of fermentative capacity in all of the strains tested. The absence of ethanol production following carbon starvation occurred even though the cells possessed a substantial glucose transport capacity. In fact, similar uptake capacities were recorded irrespective of whether the cells had been subjected to carbon or nitrogen starvation. Instead, the loss of fermentative capacity observed in carbon-starved cells was almost surely a result of energy deprivation. Carbon starvation drastically reduced the ATP content of the cells to values well below 0.1 micro mol/g, while nitrogen-starved cells still contained approximately 6 micro mol/g after 24 h of treatment. Addition of a small amount of glucose (0.1 g/liter at a cell density of 1.0 g/liter) at the initiation of starvation or use of stationary-phase instead of log-phase cells enabled the cells to preserve their fermentative capacity also during carbon starvation. The prerequisites for successful adaptation to starvation conditions are probably gradual nutrient depletion and access to energy during the adaptation period.  相似文献   

12.
Trichoderma reesei QM 9123 has been grown in batch culture in a 10 liter stirred fermentor, at a temperature of 30°C and pH 4.0. The fermentor was operated at a single stirrer speed of 400 rpm and air rate of 1 v/v/m. The effect of four inoculum sizes (0.5, 1.0, 3.0 and 5.0%) on the growth pattern and the aeration profiles was examined. Logarithmic growth of the fungus was observed. The aeration profile changed with inoculum size and at 5.0%, it was found that the oxygen uptake rate was controlled by the oxygen supply rate, during which the oxygen tension was zero.  相似文献   

13.
The growth of E. coli W in a bench scale fermentor to high cell concentration is described. The method involves growth-linked introduction of ammonia to the culture, sparging the culture with oxygen, and maintenance of aerobic conditions during the final growth phase by gradually and automatically decreasing the concentration of the carbon source, sucrose, in the culture. Thus, the oxygen demand is kept within the limits of the supply capacity, and a linear growth rate during the final phase of growth is obtained. A concentration of 42 g dry cell per liter was obtained. The yield constants for nitrogen and phosphorous were determined and were compared with those obtained using the temperature variation method.  相似文献   

14.
A novel exopolysaccharide (EPS) produced by Lactobacillus sake 0-1 (CBS 532.92) has been isolated and characterized. When the strain was grown on glucose, the produced EPS contained glucose and rhamnose in a molar ratio of 3:2 and the average molecular mass distribution (M(infm)) was determined at 6 x 10(sup6) Da. At a concentration of 1%, the 0-1 EPS had better viscosifying properties than xanthan gum when measured over a range of shear rates from 0 to 300 s(sup-1), while shear-thinning properties were comparable. Rheological data and anion-exchange chromatography suggested the presence of a negatively charged group in the EPS. Physiological parameters for optimal production of EPS were determined in batch fermentation experiments. Maximum EPS production was 1.40 g (middot) liter(sup-1), which was obtained when L. sake 0-1 had been grown anaerobically at 20(deg)C and pH 5.8. When cultured at lower temperatures, the EPS production per gram of biomass increased from 600 mg at 20(deg)C to 700 mg at 10(deg)C but the growth rate in the exponential phase decreased from 0.16 to 0.03 g (middot) liter(sup-1) (middot) h(sup-1). EPS production started in the early growth phase and stopped when the culture reached the stationary phase. Growing the 0-1 strain on different energy sources such as glucose, galactose, mannose, fructose, lactose, and sucrose did not alter the composition of the EPS produced.  相似文献   

15.
Trichoderma reesei was grown for 180h in batch culture in an 8 liter stirred fermenter using a glucose-rich medium. Concentrations of glucose, ammonia, cell dry weight, debris and lipid are presented for two runs. Cell dry weights reached 26.9g/L and 19.6g/L in these runs. The debris from solvent-extracted cells was chitin which accumulated to greater than 75% of the final cell dry weights.  相似文献   

16.
Detailed comparison of growth kinetics at temperatures below and above the optimal temperature was carried out with Escherichia coli ML 30 (DSM 1329) in continuous culture. The culture was grown with glucose as the sole limiting source of carbon and energy (100 mg liter(-1) in feed medium), and the resulting steady-state concentrations of glucose were measured as a function of the dilution rate at 17.4, 28.4, 37, and 40 degrees C. The experimental data could not be described by the conventional Monod equation over the entire temperature range, but an extended form of the Monod model [mu = mu(max) x (s - s(min))/(Ks + s - s(min))], which predicts a finite substrate concentration at 0 growth rate (s(min)), provided a good fit. The two parameters mu(max) and s(min) were temperature dependent, whereas, surprisingly, fitting the model to the experimental data yielded virtually identical Ks values (approximately 33 microg liter(-1)) at all temperatures. A model that describes steady-state glucose concentrations as a function of temperature at constant growth rates is presented. In similar experiments with mixtures of glucose and galactose (1:1 mixture), the two sugars were utilized simultaneously at all temperatures examined, and their steady-state concentrations were reduced compared with to growth with either glucose or galactose alone. The results of laboratory-scale kinetic experiments are discussed with respect to the concentrations observed in natural environments.  相似文献   

17.
Pseudomonas putida CA-3 is capable of converting the aromatic hydrocarbon styrene, its metabolite phenylacetic acid, and glucose into polyhydroxyalkanoate (PHA) when a limiting concentration of nitrogen (as sodium ammonium phosphate) is supplied to the growth medium. PHA accumulation occurs to a low level when the nitrogen concentration drops below 26.8 mg/liter and increases rapidly once the nitrogen is no longer detectable in the growth medium. The depletion of nitrogen and the onset of PHA accumulation coincided with a decrease in the rate of substrate utilization and biochemical activity of whole cells grown on styrene, phenylacetic acid, and glucose. However, the efficiency of carbon conversion to PHA dramatically increased once the nitrogen concentration dropped below 26.8 mg/liter in the growth medium. When supplied with 67 mg of nitrogen/liter, the carbon-to-nitrogen (C:N) ratios that result in a maximum yield of PHA (grams of PHA per gram of carbon) for styrene, phenylacetic acid, and glucose are 28:1, 21:1, and 18:1, respectively. In cells grown on styrene and phenylacetic acid, decreasing the carbon-to-nitrogen ratio below 28:1 and 21:1, respectively, by increasing the nitrogen concentration and using a fixed carbon concentration leads to lower levels of PHA per cell and lower levels of PHA per batch of cells. Increasing the carbon-to-nitrogen ratio above 28:1 and 21:1 for cells grown on styrene and phenylacetic acid, respectively, by decreasing the nitrogen concentration and using a fixed carbon concentration increases the level of PHA per cell but results in a lower level of PHA per batch of cells. Increasing the carbon and nitrogen concentrations but maintaining the carbon-to-nitrogen ratio of 28:1 and 21:1 for cells grown on styrene and phenylacetic acid, respectively, results in an increase in the total PHA per batch of cells. The maximum yields for PHA from styrene, phenylacetic acid, and glucose are 0.11, 0.17, and 0.22 g of PHA per g of carbon, respectively.  相似文献   

18.
An ethanol hyper-producing clostridial strain, I-1-B, was isolated from Shibi hot spring, Kagoshima prefecture and identified as Clostridium thermocellum based on morphological and physiological proper­ ties. The carbohydrates used as energy sources were glucose, fructose, cellobiose, cellulose and esculin. Fermentation products were ethanol, lactate, acetate, formate, carbon dioxide, and hydrogen. The optimum, maximum, and minimum temperature for growth are about 60, 70, and 47°C, respectively. Optimum pH for growth is about 7.5, and growth occurs at starting pH between 6.0 and 9.0. I-1-B strain has strong tolerance for ethanol and hyper ethanol-productivity. Ethanol concentrations causing 50%. decrease of growth yield are 27 and 16g/liter for I-1-B and ATCC27405 of C. thermocellum, respectively. The organism was cultured on a medium containing 80 g/liter cellulose at 60°C for 156 h. The culture was fed with a vitamin mixture containing vitamin B12 and mineral salts solution at intervals. In this culture the organism produced 23.6 g/liter (512mM) ethanol, 8.5 g/liter (94mM) lactate, 2.9 g/liter (48mM) acetate, and 0.9 g/liter (20mM) formate. The molar ratio of ethanol to total acidic products was 3.2. The ethanol productivity of the strain I-1-B is superior to any of the wild and mutant strains of C. thermocellum so far reported.  相似文献   

19.
Clostridium thermocellum is an anaerobic thermophilic bacterium that produces enthanol from cellulosic substrates. When the organism was grown in continuous culture at dilution rates ranging from 0.04 to 0.25 h-1, growth yields on cellobiose were higher than on glucose, and even higher yields were observed on cellotetraose. However, differences in bacterial yield were much greater at slow growth rates, and it appeared that glucose-grown cells had a fourfold higher (0.41 g substrate/g protein/h) maintenance energy requirement than cellobiose-grown cultures. Cellobiose and glucose were co-utilized in dual substrate continuous culture, and this was in contrast to batch culture experiments which indicated that the organism preferred the disaccharide. These experiments demonstrate that carbohydrate utilization patterns in continuous culture are different from those in batch culture and that submaximal growth rates affect substrate preference and bioenergetic parameters. The mechanisms regulating carbohydrate use may be different in batch versus continuous culture.Published with the approval of the Director of the Kentucky Agricultural Experiment Station as journal article no. 95-07-064.  相似文献   

20.
Yields of Escherichia coli B grown on glucose were determined in dialysis and non-dialysis culture. The molar growth yields were compared under conditions of excess glucose and oxygen as well as glucose- and oxygen-limiting conditions. The molar growth yields on glucose (YG) were determined for different periods during growth in non-dialysis cultures. A rapid decrease of YG was observed and growth ceased even in the presence of high concentrations of glucose and dissolved oxygen in the culture liquid. The decrease in YG was delayed in dialysis cultures where a high YG could be maintained at very high cell concentrations. The inhibition of growth depended on the accumulation of end-products of fermentative degradation of glucose. These products interfered with the oxidative phosphorylation. A large proportion of the glucose was fermented even in the presence of high concentrations of dissolved oxygen in the culture liquid. A decrease in the growth yield per g glucose was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号