首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

2.
Summary Cephalosporin C was produced by Cephalosporium acremonium in a 60 l airlift loop reactor on complex medium (with 30 kg/m3 peanut flour) in fed-batch operation. A final product concentration of 5 kg/m3 and a maximum productivity of 45 g/m3 h were attained. On-line analysis was used to determine ammonia, methionine, phosphate, reducing sugar and cephalosporin C by an autoanalyser, glucose by a flow injection analyser and cephalosporin C, penicillin N, deacetoxycephalosporin C, deacetylce-phalosporin C and methionine by HPLC. The volumetric productivity of the stirred tank reactor was higher than that of the airlift reactor because of differences in cell concentration. Specific productivities in relative to cell mass were similar in the two reactors. The substrate yield coefficient in the airlift reactor was twice that in the stirred tank reactor.Nomenclature E o2 efficiency of oxygen transfer with regard to the specific power input - K La volumetric mass transfer coefficient - OTR oxygen transfer rate - P power input - PR volumetric productivity of CPC - q a volumetric aeration rate/broth volume (vvm) - SPR specific productivity with regard to RNA - V L broth volume in reactor - z relative height of the aerated reactor  相似文献   

3.
A novel milliliter‐scale stirred tank bioreactor was developed for the cultivation of mycelium forming microorganisms on a 10 milliliter‐scale. A newly designed one‐sided paddle impeller is driven magnetically and rotates freely on an axis in an unbaffled reaction vessel made of polystyrene. A rotating lamella is formed which spreads out along the reactor wall. Thus an enhanced surface‐to‐volume ratio of the liquid phase is generated where oxygen is introduced via surface aeration. Volumetric oxygen transfer coefficients (kLa) > 0.15 s?1 were measured. The fast moving liquid lamella efficiently prevents wall growth and foaming. Mean power consumption and maximum local energy dissipation were measured as function of operating conditions in the milliliter‐scale stirred tank bioreactor (V = 10 mL) and compared to a standard laboratory‐scale stirred tank bioreactor with six‐bladed Rushton turbines (V = 2,000 mL). Mean power consumption increases with increasing impeller speed and shows the same characteristics and values on both scales. The maximum local energy dissipation of the milliliter‐scale stirred tank bioreactor was reduced compared to the laboratory‐scale at the same mean volumetric power input. Hence the milliliter impeller distributes power more uniformly in the reaction medium. Based on these data a reliable and robust scale‐up of fermentation processes is possible. This was demonstrated with the cultivation of the actinomycete Streptomyces tendae on both scales. It was shown that the process performances were equivalent with regard to biomass concentration, mannitol consumption and production of the pharmaceutical relevant fungicide nikkomycin Z up to a process time of 120 h. A high parallel reproducibility was observed on the milliliter‐scale (standard deviation < 8%) with up to 48 stirred tank bioreactors operated in a magnetic inductive drive. Rheological behavior of the culture broth was measured and showed a highly viscous shear‐thinning non‐Newtonian behavior. The newly developed one‐sided paddle impellers operated in unbaffled reactors on a 10 milliliter‐scale with a magnetic inductive drive for up to 48 parallel bioreactors allows for the first time the parallel bioprocess development with mycelium forming microorganisms. This is especially important since these kinds of cultivations normally exhibit process times of 100 h and more. Thus the operation of parallel stirred tank reactors will have the potential to reduce process development times drastically. Biotechnol. Bioeng. 2010; 106: 443–451. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Fermentations of Xanthomonas campestris, NRRL B-1459, were carried out in a bubble column fermentor (BCF) and in a stirred tank fermentor (STF) to allow comparison of representative variables measured during the microbial growth and the gum production. The microbial growth phase was described by a logistic rate equation where maximum cell concentration was provided by nitrogenous compounds balance. The average value of the maximum specific growth rate was higher in the bubble column (μ M =0.5 h?1) than in the stirred reactor (μ M =0.4 h?1). The upper values of xanthan yield (Y g-x =0.65 kg xanthan/kg glucose; Y O 2?x xanthan/kg oxygen) and specific production rate (q x =0.26 kg xanthan/kg biomass · h) were measured when the oxygen transfer coefficient was kept up above 80 h?1 in the STF fermentor. In the bubble column the fermentation achieved in the same culture medium lasts two times longer than in the stirred aerated tank; this was attributed to the low value of the oxygen transfer coefficient (K L a =20 h?1) at the beginning of the gum synthesis phase. The results obtained in the stirred tank were the basis to estimate the optimal biomass concentration which enables to achieve a culture in non-limiting oxygen transfer conditions. Nevertheless, the transfer characteristics were more homogeneous in the bubble column than in the stirred tank where dead stagnant zones were observed. This is of primary importance when establishing fermentation kinetics models.  相似文献   

5.
Several studies in laboratory-scale bioreactors are undertaken in order to verify the beneficial effect of thermal spring water in the culture medium of Thermus thermophilus HB27. Two bioreactor configurations, stirred tank and airlift, are investigated to determine the most suitable one to develop a continuous process. Water mineral composition affects the lipolytic enzyme secretion and growth of T. thermophilus HB27 in both bioreactor configurations. Furthermore, the lipolytic activity is strongly enhanced when stirred tank bioreactor is used. Moreover, operation in a stirred tank at an agitation rate of 650 rpm leads to the highest total lipolytic activity (intra- and extracellular enzyme) around 280 U/L after 32 h. Continuous cultures operating in the optimised conditions determined in batch cultures are carried out. It is noticeable that the stirred tank bioreactor was able to operate in a continuous flow mode without operational problems. In addition, the lipolytic activity obtained is about 2-fold higher than that attained in batch cultures.  相似文献   

6.
Mean power consumption and maximum local energy dissipation were measured as function of operating conditions of a milliliter‐scale stirred tank bioreactor (V = 12 mL) with a gas‐inducing impeller. A standard laboratory‐scale stirred tank bioreactor (V = 1,200 mL) with Rushton turbines was used as reference. The measured power characteristics (Newton number as function of Reynolds number) were the same on both scales. The changeover between laminar and turbulent flow regime was observed at a Reynolds number of 3,000 with the gas‐inducing stirrer on a milliliter‐scale. The Newton number (power number) in the turbulent flow regime was 3.3 on a milliliter‐scale, which is close to values reported for six‐blade Rushton turbines of standard bioreactors. Maximum local energy dissipation (εmax) was measured using a clay/polymer flocculation system. The maximum local energy dissipation in the milliliter‐scale stirred tank bioreactor was reduced compared with the laboratory‐scale stirred tank at the same mean power input per unit mass (εø), yielding εmax/εø ≈ 10 compared with εmax/εø ≈ 16. Hence, the milliliter‐scale stirred tank reactor distributes power more uniformly in the reaction medium. These results are in good agreement with literature data, where a decreasing εmax/εø with increasing ratio of impeller diameter to reactor diameter is found (d/D = 0.7 compared with d/D = 0.4). Based on these data, impeller speeds can now be easily adjusted to achieve the same maximum local energy dissipation at different scales. This enables a more reliable and robust scale‐up of bioprocesses from milliliter‐scale to liter‐scale reactors. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

7.
Pilot plant studies were performed using a concentric-tube airlift bioreactor of 2.5 m3 fermentation volume. The results have proven the relative merits of such a system in the biosynthesis of nystatin, produced by Streptomyces noursei, in submerged aerobic cultivation and batch operation mode. The results were compared to those obtained in a pilot-scale stirred tank bioreactor of 3.5 m3 fermentation volume. The fermentation processes in the two fermentation devices were similar with respect to substrate utilization, biomass production and nystatin biosynthesis. In the riser section, the dissolved oxygen concentration was higher than that in the downcomer. The volumetric oxygen mass transfer coefficient was dependent on the rheological behaviour of the biosynthesis liquids, which was not constant during the fermentation process. The total energy consumption for nystatin production in the airlift bioreactor was 56% of that in the stirred tank, while the operating costs represented 78% of those in the stirred tank bioreactor.  相似文献   

8.
Parallel operated milliliter-scale stirred tank bioreactors were applied for recombinant protein expression studies in simple batch experiments without pH titration. An enzymatic glucose release system (EnBase), a complex medium, and the frequently used LB and TB media were compared with regard to growth of Escherichia coli and recombinant protein expression (alcohol dehydrogenase (ADH) from Lactobacillus brevis and formate dehydrogenase (FDH) from Candida boidinii). Dissolved oxygen and pH were recorded online, optical densities were measured at-line, and the activities of ADH and FDH were analyzed offline. Best growth was observed in a complex medium with maximum dry cell weight concentrations of 14 g L−1. EnBase cultivations enabled final dry cell weight concentrations between 6 and 8 g L−1. The pH remained nearly constant in EnBase cultivations due to the continuous glucose release, showing the usefulness of this glucose release system especially for pH-sensitive bioprocesses. Cell-specific enzyme activities varied considerably depending on the different media used. Maximum specific ADH activities were measured with the complex medium, 6 h after induction with IPTG, whereas the highest specific FDH activities were achieved with the EnBase medium at low glucose release profiles 24 h after induction. Hence, depending on the recombinant protein, different medium compositions, times for induction, and times for cell harvest have to be evaluated to achieve efficient expression of recombinant proteins in E. coli. A rapid experimental evaluation can easily be performed with parallel batch operated small-scale stirred tank bioreactors.  相似文献   

9.
A process to obtain optically pure l-alanine has been developed using batch and continuous stirred tank reactors with a new l-aminoacylase-producing bacterium Pseudomonas sp. BA2 immobilized in calcium alginate beads coated with glutaraldehyde. The maximum production of l-alanine in a continuous stirred tank reactor was 11.26 g after 2 days of operation which is higher than that previously reported.  相似文献   

10.
Continuous production of diatom Entomonies sp. was performed in mechanically stirred tank and flat-panel airlift photobioreactors (FPAP). The maximum specific growth rate of diatom from the batch experiment was 0.98 d?1. A series of dilution rate and macronutrient concentration adjustments were performed in a stirred tank photobioreactor and found that the dilution rate ranged from 0.7 to 0.8 d?1 and modified F/2 growth media containing nitrate at 3.09?mg N/L, phosphate at 2.24?mg P/L, and silicate at 11.91?mg Si/L yielded the maximum cell number density. Finally, the continuous cultivation of Entomonies sp. was conducted in FPAP using the optimal conditions determined earlier, resulting in the maximum cell number density of 19.69?×?104 cells/mL, which was approximately 47 and 73% increase from the result using the stirred tank photobioreactor fed with modified and standard F/2 growth media, respectively.  相似文献   

11.
The enzymatic synthesis of homogeneous tri-docosahexaenoylglycerol from glycerol and ethyl docosahexaenoate in a solvent-free medium was achieved using Novozym SP 435 (immobilized lipase from Candida antarctica). Two processes were tested: a constant stirred tank reactor with N2 bubbling through and a constant stirred tank reactor under vacuum. The first experimental apparatus was clearly found to be better than the other, giving 100% (w/w) conversion after 10 h.  相似文献   

12.
Terrestrial cyanobacteria are rarely used for biotechnological processes, although they show great potential in terms of value-added substances. Cyanobacteria from arid habitats are of particular interest because they tolerate higher temperatures and feature a different product spectrum compared with their aquatic counterparts. In addition, terrestrial cyanobacteria may represent an interesting source of pharmaceutical products. To investigate the future use of these organisms in biotechnological processes, the growth rates of Trichocoleus sociatus (formerly Microcoleus sociatus) and Nostoc muscorum were examined using three different cultivation systems: shaking flasks, bubble columns, and stirred tank reactors. Parameters including pH, temperature, CO2 level, and power dissipation were investigated quantitatively in the three systems for their impact on growth rate. The highest growth rate of the terrestrial cyanobacteria could be achieved in a stirred tank reactor under enriched CO2 concentration. In this system, the growth rate was 1.15 day-1?±?0.08 (2 % vol.) for T. sociatus and 0.72 day-1?±?0.22 (5 % vol.) for N. muscorum, based on dry weight. Furthermore, a basic mathematical model was created as an add-on to predict growth rates of terrestrial cyanobacteria based on their dependency on temperature, pH, and substrate concentration, in general. This model was used to estimate growth of N. muscorum in stirred tank reactor experiments with an accuracy of 98.8 % and with 75 % accuracy for T. sociatus.  相似文献   

13.
In some biotechnological processes like wastewater treatment and biotransformation, substances are involved which are inhibitory or even toxic to the microorganisms. Their presence changes the cell physiology or even acts lethal on the cells so that the process breaks down completely. For studying such processes, a two‐stage continuous‐flow stirred tank reactor (CSTR) cascade was developed where the toxic substance is only supplied to the second reactor. Mathematical modeling of the system showed that identical steady‐state conditions can be established in both bioreactors of the two‐stage CSTR cascade when the dilution rate of the second reactor is twice as high as the dilution rate in the first reactor, provided that both reactors are fed with the same culture medium and possess an identical working volume. The theoretically derived concept was verified by cultivating Saccharomyces cerevisiae CBS 8066 under glucose‐limited aerobic conditions. Independently of the dilution rates established (D1 in the range of 0.26 to 0.38 h–1 and D2 = 2·D1), the steady‐state values of the biomass, glucose and ethanol concentration were almost identical in both reactors. Moreover, the dynamic behavior after each stepwise change of the dilution rates was also identical in both reactors, which was detected by dissolved‐oxygen measurements. Finally, the system was applied to the whole‐cell biotransformation of ethyl 2‐chloro‐3‐oxo‐butanoate as an example.  相似文献   

14.
Photoautotrophic cultivation of Chlorococcum humicola was performed in batch and continuous modes in different cultivating system arrangements to compare biomass and carotenoids’ concentration and their productivities. Batch result from stirred tank and airlift photobioreactors indicated the positive effect of increasing light intensity on growth and carotenoid production, whereas the finding from continuous cultivation indicated that carotenoid enhancement preferred high light intensity and nitrogen-deficient environment. The highest biomass (1.31?±?0.04?g?L?1) and carotenoid (4.59?±?0.06?mg?L?1) concentration as well as the highest productivities, 0.46?g?L?1 d?1 for biomass and 1.61?mg?L?1 d?1 for carotenoids, were obtained when maintaining high light intensity of 10 klx, BG-11 medium and 2% (v/v) CO2 simultaneously, while the highest carotenoid content (4.84?mg?g?1) was associated with high light intensity and nitrogen-deficient environment, which was induced by feed-modified BG-11 growth medium containing nitrate 20 folds lower than the original medium. Finally, the cultivating system arranged into smaller stirred tank photobioreactors in series yielded approximately 2.5 folds increase in both biomass and carotenoid productivities relative to using single airlift photobioreactor with equivalent working volume and similar operating condition.  相似文献   

15.
Fed-batch cultures ofL. erythrorhizon hairy root were carried out by controlling sucrose concentration and media conductivity in a shake flask and a modified stirred tank reactor. For the efficient product recovery from the culture,in situ adsorption by XAD-2 was also conducted. When sucrose was used as a carbon source, the highest shikonin production and hairy root growth were obtained. When glucose or fructose was used instead, the growth was severely inhibited. In addition, it was found that alternating feeding of sucrose could be used as an effective strategy for enhancing the productivity of shikonin derivatives., As the XAD-2 amount was increased up to 1.5 g/L, shikonin production was enhanced by removing shikonin produced and other products which might be inhibitory to cell growth. Most amount of shikonin produced was successfully recovered in XAD-2 (Over 99%). Using hairy root culture in a modified stirred tank reactor, the shikonin productivity and hairy root growth rate on the average were 9.34 mg/L day and 0.49 g DCW/L · day, respectively.  相似文献   

16.
A nonstructured model was used to study the dynamics of gibberellic acid production in a stirred tank bioreactor. Experimental data were obtained from submerged batch cultures of Gibberella fujikuroi (CDBB H‐984) grown in varying ratios of glucose‐corn oil as the carbon source. The nitrogen depletion effect was included in mathematical model by considering the specific kinetic constants as a linear function of the normalized nitrogen consumption rate. The kinetics of biomass growth and consumption of phosphate and nitrogen were based on the logistic model. The traditional first‐order kinetic model was used to describe the specific consumption of glucose and corn oil. The nitrogen effect was solely included in the phosphate and corn oil consumption and biomass growth. The model fit was satisfactory, revealing the dependence of the kinetics with respect to the nitrogen assimilation rate. Through simulations, it was possible to make diagrams of specific growth rate and specific rate of substrate consumptions, which was a powerful tool for understanding the metabolic interactions that occurred during the various stages of fermentation process. This kinetic analysis provided the proposal of a possible mechanism of regulation on growth, substrate consumptions, and production of gibberellic acid (GA3) in G. fujikuroi. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1169–1180, 2013  相似文献   

17.
Denitrification of a synthetic wastewater containing nitrates and methanol as carbon source was carried out in two systems – a fluidized‐bed biofilm reactor (FBBR) and a stirred tank reactor (STR) – using Pseudomonas denitrificans over a period of five months. Nitrogen loading was varied during operation of both reactors to assess differences in the response to transient conditions. Experimental data were analyzed to obtain a comparison of denitrification kinetics in biofilm and suspended growth reactors. The comparison showed that the volumetric degradation capacity in the FBBR (5.36 kg N · m–3 · d–1) was higher than in the STR, due to higher biomass concentration (10 kg BM · m–3 vs 1.2 kg BM m–3).  相似文献   

18.
Aims: Phytase production by Sporotrichum thermophile in a cost‐effective cane molasses medium in submerged fermentation and its application in bread. Methods and Results: The production of phytase by a thermophilic mould S. thermophile was investigated using free and immobilized conidiospores in cane molasses medium in shake flasks, and stirred tank and air‐lift fermenters. Among surfactants tested, Tweens (Tween‐20, 40 and 80) and sodium oleate increased phytase accumulation, whereas SDS and Triton X‐100 inhibited the enzyme production. The mould produced phytase optimally at aw 0·95, and it declined sharply below this aw value. The enzyme production was comparable in air‐lift and stirred tank reactors with a marked reduction in fermentation time. Among the matrices tried, Ca‐alginate was the best for conidiospore immobilization, and fungus secreted sustained levels of enzyme titres over five cycles. The phytic acid in the dough was efficiently hydrolysed by the enzyme accompanied by the liberation of soluble phosphate in the bread. Conclusions: The phytase production by S. thermophile was enhanced in the presence of Tween‐80 in cane molasses medium. A peak in enzyme production was attained in 48 h in the fermenter when compared with that of 96 h in shake flasks. Ca‐alginate immobilized conidiospores germinated to produce fungal growth that secreted sustained levels of phytase over five cycles. The bread made with phytase contained reduced level of phytic acid and a high‐soluble phosphate. Significance and Impact of the Study: The phytase accumulation by S. thermophile was increased by the surfactants. The sustainability of enzyme production in stirred tank and air‐lift fermenters suggested the possibility for scaling up of phytase. The bread made with phytase contained low level of antinutrient, i.e. phytic acid.  相似文献   

19.
Sequential batch and continuous operation of a rotating biological contacting (RBC) reactor and the effects of dissolved oxygen on the decoloration of amaranth by Trametes versicolor were evaluated. Amaranth belongs to the group of azo dyes which are potential carcinogens and/or mutagens that can be transformed into toxic aryl amines under anaerobic conditions. Cultivation of T. versicolor in a stirred tank reactor was found to be unsuitable for amaranth decoloration due to significant biomass fouling and increase in medium viscosity. Assuming that decoloration follows first-order kinetics, amaranth was decolorized more rapidly when T. versicolor was immobilized on jute twine in a RBC reactor operated either in a sequential batch (k=0.25 h–1) or in a continuous (0.051 h−1) mode compared to a stirred tank reactor (0.015 h−1). Oxygen was found to be essential for decoloration with the highest decoloration rates occurring at oxygen saturation. Although longer retention times resulted in more decoloration when the RBC was operated in the continuous mode (about 33% amaranth decoloration), sequential batch operation gave better results (>95%) under similar nutrient conditions. Our data indicate that the fastest decoloration should occur in the RBC using nitrogen-free Kirk’s medium with 1 g/l glucose in sequential batch operation at rotational speeds and/or aeration rates which maintain oxygen saturation in the liquid phase.  相似文献   

20.
Bacillus licheniformis (DSM 641) was cultivated on complex medium in batch and fed-batch operations in a 20-l working volume stirred tank reactor. The medium composition (maltose, glucose, sucrose, fructose, ammonia, phosphate) and O2 and CO2 in the off-gas were monitored on-line; pH, pO2, turbidity, culture fluorescence were monitored in situ; optical density, concentrations of sugars, amino acids, phosphate, proteins, DNA, protease activity and total solids content were monitored off-line. Problems of on-line sampling, cell concentration monitoring, and culture fluorescence measurements and the influence of medium components on the enzyme productivity are discussed. Close relationships between variations of pH, pO2, O2 transfer rate and CO2 production rate on the one hand and cell mass and fluorescence intensity on the other were demonstrated in batch and in fed-batch cultures. Using suitable cultivation conditions, alkaline protease with high volume activity [15300 units (U)/ml] and specific activity (510 U/mg) was produced. By replacing the complex medium with a semisynthetic one, the volumetric activity was reduced by a factor of ten (to 1650 U/ml), but the specific productivity by a factor of only two (to 210 U/ml). Correspondence to: K. Schügerl  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号