首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The orientation of poplar plastocyanin in the complex with turnip cytochrome f has been determined by rigid-body calculations using restraints from paramagnetic NMR measurements. The results show that poplar plastocyanin interacts with cytochrome f with the hydrophobic patch of plastocyanin close to the heme region on cytochrome f and via electrostatic interactions between the charged patches on both proteins. Plastocyanin is tilted relative to the orientation reported for spinach plastocyanin, resulting in a longer distance between iron and copper (13.9 A). With increasing ionic strength, from 0.01 to 0.11 M, all observed chemical-shift changes decrease uniformly, supporting the idea that electrostatic forces contribute to complex formation. There is no indication for a rearrangement of the transient complex in this ionic strength range, contrary to what had been proposed earlier on the basis of kinetic data. By decreasing the pH from pH 7.7 to pH 5.5, the complex is destabilized. This may be attributed to the protonation of the conserved acidic patches or the copper ligand His87 in poplar plastocyanin, which are shown to have similar pK(a) values. The results are interpreted in a two-step model for complex formation.  相似文献   

2.
Spinach plastocyanin was selectively modified using tetranitromethane which incorporates a nitro group ortho to the hydroxyl group of tyrosine 83 (Anderson, G.P., Draheim, J.E. and Gross, E.L. (1985) Biochim. Biophys. Acta 810, 123-131). This tyrosine residue has been postulated to be part of the cytochrome f binding site on plastocyanin. Since the hydroxyl moiety of nitrotyrosine 83 is deprotonated above its pK of 8.3, it provides a useful modification for studying the effect of an extra negative charge on the interaction of plastocyanin with cytochrome f. No effect on cytochrome f oxidation was observed at pH 7 under conditions in which the hydroxyl moiety is protonated. However, the rate of cytochrome f oxidation increased at pH values greater than 8, reaching a maximum at pH 8.6 and decreasing at still higher pH values. The increase was half-maximal at pH 8.3 which is the pK for the hydroxyl moiety on nitrotyrosine 83. In contrast, the rate of cytochrome f oxidation for control plastocyanin was independent of pH from pH 7 to 8.6. These results show that increasing the negative charge on plastocyanin at Tyr-83 increases the ability to react with cytochrome f, supporting the hypothesis that cytochrome f interacts with plastocyanin at this location. In contrast, the reaction of Ntyr-83 plastocyanin with mammalian cytochrome c was independent of pH, suggesting that its mode of interaction with plastocyanin is different from that of cytochrome f. A comparison of the effects of Ntyr-83 modification of plastocyanin with the carboxyl- and amino-group modifications reported previously suggests that plastocyanin binds to cytochrome f in such a way that electrons could be donated to plastocyanin at either of its two binding sites.  相似文献   

3.
Factor analysis was used to resolve the spectral components in the near-uv absorption spectrum of plastocyanin. The data set was absorption as a function of four variables: wavelength, species of plastocyanin, oxidation state of the copper center, and environmental pH. The data were fit with the traditional bilinear model, as well as with trilinear and quadrilinear models. Trilinear and quadrilinear models have the advantage that they uniquely define the components, avoiding the indeterminacy of bilinear models. Bilinear analysis using the absorption spectra of tyrosine and copper metallothionein as targets resulted in a two-component solution which was nearly identical to that obtained using trilinear and quadrilinear models, for which no targets are required. The two-component models separate the absorption into tyrosine and copper center components. The absorption of tyrosine is found to be pH dependent in reduced plastocyanin, and the absorption magnitude of the reduced copper center is the same in the four different plastocyanin species. Further resolution is provided by a three-component quadrilinear model. The results indicate that there are at least two different electronic transitions which cause the absorption of the reduced copper center and that one of them couples to a tyrosine residue. It is the absorption of this coupled tyrosine residue which is pH dependent. Correlation of the results with previous studies indicates that it is Tyr 83 which is the perturbed residue. The separation of the absorption of the copper center and Tyr 83 provides spectroscopic probes for the conformations of the north pole and east face reaction sites on the plastocyanin protein.  相似文献   

4.
The crystal structure of plastocyanin from spinach has been determined using molecular replacement, with the structure of plastocyanin from poplar as a search model. Successful crystallization was facilitated by site-directed mutagenesis in which residue Gly8 was substituted with Asp. The region around residue 8 was believed to be too mobile for the wild-type protein to form crystals despite extensive screening. The current structure represents the oxidized plastocyanin, copper (II), at low pH (approximately 4.4). In contrast to the similarity in the core region as compared to its poplar counterpart, the structure shows some significant differences in loop regions. The most notable is the large shift of the 59-61 loop where the largest shift is 3.0 A for the C(alpha) atom of Glu59. This results in different patterns of electrostatic potential around the acidic patches for the two proteins.  相似文献   

5.
The crystal structures of oxidized and reduced plastocyanins from Synechococcus sp. PCC 7942 have been determined at 1.9 and 1.8 A resolution, respectively, at pH 5.0. The protein consists of only 91 amino acid residues, the smallest number known for a plastocyanin, and apparently lacks the mostly conserved acidic patch that is believed to be important for recognition with electron-transfer partners. The protein has two acidic residues, Glu42 and Glu85, around Tyr83, which is thought to be a possible conduit for electrons, but these are neutralized by Arg88 and Lys58. Residue Arg88 interacts with Tyr83 through a pi-pi interaction in which the guanidinium group of the former completely overlaps the aromatic ring of the tyrosine. Reduction of the protein at pH 5.0 causes a lengthening of one Cu-N(His) bond by 0.36 A, despite the small rms deviation of 0.08 A calculated for the backbone atoms. Moreover, significant conformational changes of Arg88 and Lys58, along with the movement of a water molecule adjacent to the OH group of Tyr83, were observed on reduction; the guanidinium group of Arg88 rotates by more than 11 degrees, and the water molecule moves by 0.42 A. The changes around the copper site and the alterations around Tyr83 may be linked to the reduction of the copper.  相似文献   

6.
Cytochrome f: Structure,function and biosynthesis   总被引:1,自引:1,他引:0  
Cytochrome f is an intrinsic membrane component of the cytochrome bf complex, transferring electrons from the Rieske FeS protein to plastocyanin in the thylakoid lumen. The protein is held in the thylakoid membrane by a single transmembrane span located near its C-terminus with a globular hydrophilic domain extending into the lumen. The globular domain of the turnip protein has recently been crystallised, offering the prospect of a detailed three-dimensional structure. Reaction with plastocyanin involves localised positive charges on cytochrome f interacting with the acidic patch on plastocyanin and electron transfer via the surface-exposed tyrosine residue (Tyr83) of plastocyanin. Apocytochrome f is encoded in the chloroplast genome and is synthesised with an N-terminal presequence which targets the protein to the thylakoid membrane. The synthesis of cytochrome f is coordinated with the synthesis of the other subunits of the cytochrome bf complex.  相似文献   

7.
To understand the specificity and efficiency of protein-protein interactions promoting electron transfer, we evaluated the role of electrostatic forces in precollision orientation by the development of two new methods, computer graphics alignment of protein electrostatic fields and a systematic orientational search of intermolecular electrostatic energies for two proteins at present separation distances. We applied these methods to the plastocyanin/cytochrome c interaction, which is faster than random collision, but too slow for study by molecular dynamics techniques. Significant electrostatic potentials were concentrated on one-fourth (969 A2) of the plastocyanin surface, with the greatest negative potential centered on the Tyr-83 hydroxyl within the acidic patch, and on one-eighth (632 A2) of the cytochrome c surface, with the greatest positive potential centered near the exposed heme edge. Coherent electrostatic fields occurred only over these regions, suggesting that local, rather than global, charge complementarity controls productive recognition. The three energetically favored families of pre-collision orientations all directed the positive region surrounding the heme edge of cytochrome c toward the acidic patch of plastocyanin but differed in heme plane orientation. Analysis of electrostatic fields, electrostatic energies of precollision orientations with 12 and 6 A separation distances, and surface topographies suggested that the favored orientations should converge to productive complexes promoting a single electron-transfer pathway from the cytochrome c heme edge to Tyr-83 of plastocyanin. Direct interactions of the exposed Cu ligand in plastocyanin with the cytochrome c heme edge are not unfavorable sterically or electrostatically but should occur no faster than randomly, indicating that this is not the primary pathway for electron transfer.  相似文献   

8.
To illustrate the functions of the aromatic residue Phe35 of cytochrome b(5) and to give further insight into the roles of the Phe35-containing hydrophobic patch and/or aromatic channel of cytochrome b(5), we studied electron transfer reactions of cytochrome b(5) and its Phe35Tyr and Phe35Leu variants with cytochrome c, with the wild-type and Tyr83Phe and Tyr83Leu variants of plastocyanin, and with the inorganic complexes [Fe(EDTA)](-), [Fe(CDTA)](-) and [Ru(NH(3))(6)](3+). The changes at Phe35 of cytochrome b(5) and Tyr83 of plastocyanin do not affect the second-order rate constants for the electron transfer reactions. These results show that the invariant aromatic residues and aromatic patch/channel are not essential for electron transfer in these systems.  相似文献   

9.
Modeling of the electrostatic potential field of plastocyanin   总被引:2,自引:0,他引:2  
The DelPhi computer program is used to calculate the electrostatic potential field of the photosynthetic electron transport protein plastocyanin. Knowledge of the potential field is important for understanding the mechanisms by which plastocyanin interacts with other charged reagents. The program uses a macroscopic, continuum approach in which the protein and solvent are assigned different dielectric constants, the crystal structure of the protein defines the dielectric boundary, and the ionic strength of the solvent is taken into account. The potential field is determined by numerically solving the Poisson-Boltzmann equation. The field surrounding plastocyanin is characterized by a region of positive potential over the copper center active site, and a region of negative potential over the adjacent association site containing tyrosine 83. The shape and magnitude of the potential field shows a strong dependence on the ionic strength and pH of the solvent. The program is able to accurately predict the effect of the copper center oxidation state on the pKa of a tetranitromethane derivative of tyrosine 83 using an intrinsic protein dielectric constant of 2 to 4. Evidence is also presented that the glutamate 68 side chain is exposed to the solvent to a greater extent in the solution structure of plastocyanin than in the crystal structure.  相似文献   

10.
The interaction between plastocyanin and the intact cytochrome bf complex, both from spinach, has been studied by stopped-flow kinetics with mutant plastocyanin to elucidate the site of electron transfer and the docking regions of the molecule. Mutation of Tyr-83 to Arg or Leu provides no evidence for a second electron transfer path via Tyr-83 of plastocyanin, which has been proposed to be the site of electron transfer from cytochrome f. The data found with mutations of acidic residues indicate that both conserved negative patches are essential for the binding of plastocyanin to the intact cytochrome bf complex. Replacing Ala-90 and Gly-10 at the flat hydrophobic surface of plastocyanin by larger residues slowed down and accelerated, respectively, the rate of electron transfer as compared with wild-type plastocyanin. These opposing effects reveal that the hydrophobic region around the electron transfer site at His-87 is divided up into two regions, of which only that with Ala-90 contributes to the attachment to the cytochrome bf complex. These binding sites of plastocyanin are substantially different from those interacting with photosystem I. It appears that each of the two binding regions of plastocyanin is split into halves, which are used in different combinations in the molecular recognition at the two membrane complexes.  相似文献   

11.
Kieseritzky G  Knapp EW 《Proteins》2008,71(3):1335-1348
pK(A) in proteins are determined by electrostatic energy computations using a small number of optimized protein conformations derived from crystal structures. In these protein conformations hydrogen positions and geometries of salt bridges on the protein surface were determined self-consistently with the protonation pattern at three pHs (low, ambient, and high). Considering salt bridges at protein surfaces is most relevant, since they open at low and high pH. In the absence of these conformational changes, computed pK(A)(comp) of acidic (basic) groups in salt bridges underestimate (overestimate) experimental pK(A)(exp), dramatically. The pK(A)(comp) for 15 different proteins with 185 known pK(A)(exp) yield an RMSD of 1.12, comparable with two other methods. One of these methods is fully empirical with many adjustable parameters. The other is also based on electrostatic energy computations using many non-optimized side chain conformers but employs larger dielectric constants at short distances of charge pairs that diminish their electrostatic interactions. These empirical corrections that account implicitly for additional conformational flexibility were needed to describe the energetics of salt bridges appropriately. This is not needed in the present approach. The RMSD of the present approach improves if one considers only strongly shifted pK(A)(exp) in contrast to the other methods under these conditions. Our method allows interpreting pK(A)(comp) in terms of pH dependent hydrogen bonding pattern and salt bridge geometries. A web service is provided to perform pK(A) computations.  相似文献   

12.
S He  S Modi  D S Bendall    J C Gray 《The EMBO journal》1991,10(13):4011-4016
Site-directed mutants of the pea plastocyanin gene in which the codon for the surface-exposed Tyr83 has been changed to codons for Phe83 and Leu83 have been expressed in transgenic tobacco plants. The mutant proteins have been purified to homogeneity and their conformations shown not to differ significantly from the wild-type plastocyanin by 1H-NMR and CD. Overall rate constants for electron transfer (k2) from cytochrome f to plastocyanin have been measured by stopped-flow spectrophotometry and rate constants for binding (ka) and association constants (KA) have been measured from the enhanced Soret absorption of cytochrome f on binding plastocyanin. These measurements allow the calculation of the intrinsic rate of electron transfer in the binary complex. An 8-fold decrease in the overall rate of electron transfer to the Phe83 mutant is due entirely to a decreased association constant for cytochrome f, whereas the 40-fold decrease in the overall rate of electron transfer to the Leu83 mutant is due to weaker binding and a lower intrinsic rate of electron transfer. This indicates that Tyr83 is involved in binding to cytochrome f and forms part of the main route of electron transfer.  相似文献   

13.
The X-ray crystal structures of oxidized and reduced plastocyanin obtained from the fern Dryopteris crassirhizoma have been determined at 1.7 and 1.8 A resolution, respectively. The fern plastocyanin is unique in the longer main chain composed of 102 amino acid residues and in the unusual pH dependence due to the pi-pi stacking interaction around the copper site [Kohzuma, T., et al. (1999) J. Biol. Chem. 274, 11817-11823]. Here we report the structural comparison between the fern plastocyanin and other plastocyanins from cyanobacteria, green algae, and other higher plants, together with the structural changes of fern plastocyanin upon reduction. Glu59 hydrogen bonds to the OH of Tyr83, which is thought to be a possible conduit for electrons, in the oxidized state. However, it moves away from Tyr83 upon reduction like poplar plastocyanin.  相似文献   

14.
This paper reports the first site-directed mutagenesis analysis of any cytochrome c6, a heme protein that performs the same function as the copper-protein plastocyanin in the electron transport chain of photosynthetic organisms. Photosystem I reduction by the mutants of cytochrome c6 from the cyanobacterium Synechocystis sp. PCC 6803 has been studied by laser flash absorption spectroscopy. Their kinetic efficiency and thermodynamic properties have been compared with those of plastocyanin mutants from the same organism. Such a comparative study reveals that aspartates at positions 70 and 72 in cytochrome c6 are located in an acidic patch that may be isofunctional with the well known "south-east" patch of plastocyanin. Calculations of surface electrostatic potential distribution in the mutants of cytochrome c6 and plastocyanin indicate that the changes in protein reactivity depend on the surface electrostatic potential pattern rather than on the net charge modification induced by mutagenesis. Phe-64, which is close to the heme group and may be the counterpart of Tyr-83 in plastocyanin, does not appear to be involved in the electron transfer to photosystem I. In contrast, Arg-67, which is at the edge of the cytochrome c6 acidic area, seems to be crucial for the interaction with the reaction center.  相似文献   

15.
In cyanobacteria, plastocyanin and cytochrome c6 are two soluble metalloproteins which can alternately serve as electron donors to photosystem I. From site-directed mutagenesis studies in vitro, it is well-established that both hydrophobic and electrostatic forces are involved in the interaction between the donor proteins and photosystem I. Hence, two isofunctional areas, a hydrophobic one in the north and an acidic one in the east, have been described on the surface of both electron donors. In this work, we have tested the relevance of such kinds of interactions in the photosystem I reduction inside the cell. Several plastocyanin and cytochrome c6 site-directed mutant strains affecting both the acidic and hydrophobic regions of the two metalloproteins, which were previously characterized in vitro, have been constructed. The photosystem I reduction kinetics of the different mutants have been analyzed by laser flash absorption spectroscopy. Relevant differences have been found between the in vitro and in vivo results, mainly regarding the role played by the electrostatic interactions. Adding positive electrostatic charges to the acidic patch of plastocyanin and cytochrome c6 promotes an enhanced interaction with photosystem I in vitro but yields the opposite effect in vivo. These discrepancies are discussed in view of the different environmental conditions, in vitro and in vivo, for the reaction mechanism of photosystem I reduction, namely, differential interaction of the electron donors with the thylakoidal membrane and kinetics of donor exchange.  相似文献   

16.
The role of electrostatic interactions in determining the rate of electron transfer between cytochrome f and plastocyanin has been examined in vitro with mutants of turnip cytochrome f and mutants of pea and spinach plastocyanins. Mutation of lysine residues Lys58, Lys65 and Lys187 of cytochrome f to neutral or acidic residues resulted in decreased binding constants and decreased rates of electron transfer to wild-type pea plastocyanin. Interaction of the cytochrome f mutant K187E with the pea plastocyanin mutant D51K gave a further decrease in electron transfer rate, indicating that a complementary charge pair at these positions could not compensate for the decreased overall charge on the proteins. Similar results were obtained with the interaction of the cytochrome f mutant K187E with single, double and triple mutants of residues in the acidic patches of spinach plastocyanin. These results suggest that the lysine residues of the basic patch on cytochrome f are predominantly involved in long-range electrostatic interactions with plastocyanin. However, analysis of the data using thermodynamic cycles provided evidence for the interaction of Lys187 of cytochrome f with Asp51, Asp42 and Glu43 of plastocyanin in the complex, in agreement with a structural model of a cytochrome f-plastocyanin complex determined by NMR.  相似文献   

17.
Cytochrome f and plastocyanin are redox partners in the photosynthetic electron-transfer chain. Electron transfer from cytochrome f to plastocyanin occurs in a specific short-lived complex. To obtain detailed information about the binding interface in this transient complex, the effects of binding on the backbone and side-chain protons of plastocyanin have been analyzed by mapping NMR chemical-shift changes. Cytochrome f was added to plastocyanin up to 0.3 M equiv, and the plastocyanin proton chemical shifts were measured. Out of approximately 500 proton resonances, 86% could be observed with this method. Nineteen percent demonstrate significant chemical-shift changes and these protons are located in the hydrophobic patch (including the copper ligands) and the acidic patches of plastocyanin, demonstrating that both areas are part of the interface in the complex. This is consistent with the recently determined structure of the complex [Ubbink, M., Ejdeb?ck, M., Karlsson, B. G., and Bendall, D. S. (1998) Structure 6, 323-335]. The largest chemical-shift changes are found around His87 in the hydrophobic patch, which indicates tight contacts and possibly water exclusion from this part of the protein interface. These results support the idea that electron transfer occurs via His87 to the copper in plastocyanin and suggest that the hydrophobic patch determines the specificity of the binding. The chemical-shift changes in the acidic patches are significant but small, suggesting that the acidic groups are involved in electrostatic interactions but remain solvent exposed. The existence of small differences between the present data and those used for the structure may imply that the redox state of the metals in both proteins slightly affects the structure of the complex. The chemical-shift mapping is performed on unlabeled proteins, making it an efficient way to analyze effects of mutations on the structure of the complex.  相似文献   

18.
Plastocyanin isolated from an aquatic higher plant, Ceratophyllum demersum L. (hornwort), has been characterized by electronic absorption, circular dichroism (CD), and electron paramagnetic resonance (EPR) spectroscopies. The visible absorption, CD, and EPR spectra of hornwort plastocyanin indicated a complete similarity of blue copper center to those of terrestrial higher plants and algae. However, the ultraviolet absorption spectrum of hornwort plastocyanin exhibited a lower tyrosine (Tyr) and a higher phenylalanine (Phe) content of the protein comparing with other plastocyanins. The ratio of Phe/Tyr residues was estimated to be 9 by amino acid analysis. The hornwort plastocyanin resembles in amino acid composition terrestrial higher plant plastocyanins rather than alga plastocyanins but is peculiar in the content of Phe and Tyr residues.  相似文献   

19.
Sivaraman S  Kirsch JF 《The FEBS journal》2006,273(9):1920-1929
Human tyrosine aminotransferase (hTATase) is the pyridoxal phosphate-dependent enzyme that catalyzes the reversible transamination of tyrosine to p-hydrophenylpyruvate, an important step in tyrosine metabolism. hTATase deficiency is implicated in the rare metabolic disorder, tyrosinemia type II. This enzyme is a member of the poorly characterized Igamma subfamily of the family I aminotransferases. The full length and truncated forms of recombinant hTATase were expressed in Escherichia coli, and purified to homogeneity. The pH-dependent titration of wild-type reveals a spectrum characteristic of family I aminotransferases with an aldimine pK(a) of 7.22. I249A mutant hTATase exhibits an unusual spectrum with a similar aldimine pK(a) (6.85). hTATase has very narrow substrate specificity with the highest enzymatic activity for the Tyr/alpha-ketoglutarate substrate pair, which gives a steady state k(cat) value of 83 s(-1). In contrast there is no detectable transamination of aspartate or other cosubstrates. The present findings show that hTATase is the only known aminotransferase that discriminates significantly between Tyr and Phe: the k(cat)/K(m) value for Tyr is about four orders of magnitude greater than that for Phe. A comparison of substrate specificities of representative Ialpha and Igamma aminotransferases is described along with the physiological significance of the discrimination between Tyr and Phe by hTATase as applied to the understanding of the molecular basis of phenylketonuria.  相似文献   

20.
Computational studies are performed to analyze the physical properties of hydrogen bonds donated by Tyr16 and Asp103 to a series of substituted phenolate inhibitors bound in the active site of ketosteroid isomerase (KSI). As the solution pK(a) of the phenolate increases, these hydrogen bond distances decrease, the associated nuclear magnetic resonance (NMR) chemical shifts increase, and the fraction of protonated inhibitor increases, in agreement with prior experiments. The quantum mechanical/molecular mechanical calculations provide insight into the electronic inductive effects along the hydrogen bonding network that includes Tyr16, Tyr57, and Tyr32, as well as insight into hydrogen bond coupling in the active site. The calculations predict that the most-downfield NMR chemical shift observed experimentally corresponds to the Tyr16-phenolate hydrogen bond and that Tyr16 is the proton donor when a bound naphtholate inhibitor is observed to be protonated in electronic absorption experiments. According to these calculations, the electronic inductive effects along the hydrogen bonding network of tyrosines cause the Tyr16 hydroxyl to be more acidic than the Asp103 carboxylic acid moiety, which is immersed in a relatively nonpolar environment. When one of the distal tyrosine residues in the network is mutated to phenylalanine, thereby diminishing this inductive effect, the Tyr16-phenolate hydrogen bond becomes longer and the Asp103-phenolate hydrogen bond shorter, as observed in NMR experiments. Furthermore, the calculations suggest that the differences in the experimental NMR data and electronic absorption spectra for pKSI and tKSI, two homologous bacterial forms of the enzyme, are due predominantly to the third tyrosine that is present in the hydrogen bonding network of pKSI but not tKSI. These studies also provide experimentally testable predictions about the impact of mutating the distal tyrosine residues in this hydrogen bonding network on the NMR chemical shifts and electronic absorption spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号