首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lipid polyunsaturated fatty acids are highly enriched in synaptic membranes, including synaptic vesicles, but their precise function there is unknown. Caenorhabditis elegans fat-3 mutants lack long-chain polyunsaturated fatty acids (LC-PUFAs); they release abnormally low levels of serotonin and acetylcholine and are depleted of synaptic vesicles, but the mechanistic basis of these defects is unclear. Here we demonstrate that synaptic vesicle endocytosis is impaired in the mutants: the synaptic vesicle protein synaptobrevin is not efficiently retrieved after synaptic vesicles fuse with the presynaptic membrane, and the presynaptic terminals contain abnormally large endosomal-like compartments and synaptic vesicles. Moreover, the mutants have abnormally low levels of the phosphoinositide phosphatase synaptojanin at release sites and accumulate the main synaptojanin substrate phosphatidylinositol 4,5-bisphosphate at these sites. Both synaptobrevin and synaptojanin mislocalization can be rescued by providing exogenous arachidonic acid, an LC-PUFA, suggesting that the endocytosis defect is caused by LC-PUFA depletion. By showing that the genes fat-3 and synaptojanin act in the same endocytic pathway at synapses, our findings suggest that LC-PUFAs are required for efficient synaptic vesicle recycling, probably by modulating synaptojanin localization at synapses.  相似文献   

2.
Highwire regulates synaptic growth in Drosophila   总被引:10,自引:0,他引:10  
The formation, stabilization, and growth of synaptic connections are dynamic and highly regulated processes. The glutamatergic neuromuscular junction (NMJ) in Drosophila grows new boutons and branches throughout larval development. A primary walking behavior screen followed by a secondary anatomical screen led to the identification of the highwire (hiw) gene. In hiw mutants, the specificity of motor axon pathfinding and synapse formation appears normal. However, NMJ synapses grow exuberantly and are greatly expanded in both the number of boutons and the extent and length of branches. These synapses appear normal ultrastructurally but have reduced quantal content physiologically. hiw encodes a large protein found at presynaptic terminals. Within presynaptic terminals, HIW is localized to the periactive zone surrounding active zones; Fasciclin II (Fas II), which also controls synaptic growth, is found at the same location.  相似文献   

3.
Koh TW  Verstreken P  Bellen HJ 《Neuron》2004,43(2):193-205
We describe the isolation of mutations in dynamin-associated protein 160 kDa (dap160), the Drosophila homolog of intersectin, a putative adaptor for proteins involved in endocytosis, cytoskeletal regulation, and signaling. We show that partial loss-of-function mutants display temperature-sensitive (ts) paralysis, whereas null mutants show ts defects in endocytosis. Loss-of-function mutants exhibit bouton overgrowth at larval neuromuscular junctions (NMJs), but evoked neurotransmission is normal. Mutant NMJs show a mild endocytic defect at 22 degrees C, which is strongly enhanced at 34 degrees C. The levels of dynamin, synaptojanin and endophilin are severely reduced in dap160 mutant NMJs, suggesting that Dap160 serves to stabilize an endocytic macromolecular complex. Electron microscopy reveals fewer vesicles, aberrant large vesicles, and an accumulation of endocytic intermediates at active and periactive zones in mutant terminals. Our data suggest that Dap160, like dynamin, is involved in synaptic vesicle retrieval at active and periactive zones.  相似文献   

4.
Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating   总被引:11,自引:0,他引:11  
We describe the isolation and characterization of Drosophila synaptojanin (synj) mutants. synj encodes a phosphatidylinositol phosphatase involved in clathrin-mediated endocytosis. We show that Synj is specifically localized to presynaptic terminals and is associated with synaptic vesicles. The electrophysiological and ultrastructural defects observed in synj mutants are strikingly similar to those found in endophilin mutants, and Synj and Endo colocalize and interact biochemically. Moreover, synj; endo double mutant synaptic terminals exhibit properties that are very similar to terminals of each single mutant, and overexpression of Endophilin can partially rescue the functional defects in partial loss-of-function synj mutants. Interestingly, Synj is mislocalized and destabilized at synapses devoid of Endophilin, suggesting that Endophilin recruits and stabilizes Synj on newly formed vesicles to promote vesicle uncoating. Our data also provide further evidence that kiss-and-run is able to maintain neurotransmitter release when synapses are not extensively challenged.  相似文献   

5.
Endocytosis at ribbon synapses   总被引:1,自引:0,他引:1  
Unlike conventional synaptic terminals that release neurotransmitter episodically in response to action potentials, neurons of the visual, auditory and vestibular systems encode sensory information in graded signals that are transmitted at their synapses by modulating the rate of continuous release. The synaptic ribbon, a specialized structure found at the active zones of these neurons, is necessary to sustain the high rates of exocytosis required for continuous release. To maintain the fidelity of synaptic transmission, exocytosis must be balanced by high-capacity endocytosis, to retrieve excess membrane inserted during vesicle fusion. Capacitance measurements following vesicle release in ribbon-type neurons indicate two kinetically distinct phases of compensatory endocytosis, whose relative contributions vary with stimulus intensity. The two phases can be independently regulated and may reflect different underlying mechanisms operating on separate pools of recycling vesicles. Electron microscopy shows diversity among ribbon-type synapses in the relative importance of clathrin-mediated endocytosis versus bulk membrane retrieval as mechanisms of compensatory endocytosis. Ribbon synapses, like conventional synapses, make use of multiple endocytosis pathways to replenish synaptic vesicle pools, depending on the physiological needs of the particular cell type.  相似文献   

6.
Presynaptic terminals are metabolically active and accrue damage through continuous vesicle cycling. How synapses locally regulate protein homeostasis is poorly understood. We show that the presynaptic lipid phosphatase synaptojanin is required for macroautophagy, and this role is inhibited by the Parkinson's disease mutation R258Q. Synaptojanin drives synaptic endocytosis by dephosphorylating PI(4,5)P2, but this function appears normal in SynaptojaninRQ knock‐in flies. Instead, R258Q affects the synaptojanin SAC1 domain that dephosphorylates PI(3)P and PI(3,5)P2, two lipids found in autophagosomal membranes. Using advanced imaging, we show that SynaptojaninRQ mutants accumulate the PI(3)P/PI(3,5)P2‐binding protein Atg18a on nascent synaptic autophagosomes, blocking autophagosome maturation at fly synapses and in neurites of human patient induced pluripotent stem cell‐derived neurons. Additionally, we observe neurodegeneration, including dopaminergic neuron loss, in SynaptojaninRQ flies. Thus, synaptojanin is essential for macroautophagy within presynaptic terminals, coupling protein turnover with synaptic vesicle cycling and linking presynaptic‐specific autophagy defects to Parkinson's disease.  相似文献   

7.
Epidermal growth factor receptor pathway substrate clone 15 (Eps15) is a protein implicated in endocytosis, endosomal protein sorting, and cytoskeletal organization. Its role is, however, still unclear, because of reasons including limitations of dominant-negative experiments and apparent redundancy with other endocytic proteins. We generated Drosophila eps15-null mutants and show that Eps15 is required for proper synaptic bouton development and normal levels of synaptic vesicle (SV) endocytosis. Consistent with a role in SV endocytosis, Eps15 moves from the center of synaptic boutons to the periphery in response to synaptic activity. The endocytic protein, Dap160/intersectin, is a major binding partner of Eps15, and eps15 mutants phenotypically resemble dap160 mutants. Analyses of eps15 dap160 double mutants suggest that Eps15 functions in concert with Dap160 during SV endocytosis. Based on these data, we hypothesize that Eps15 and Dap160 promote the efficiency of endocytosis from the plasma membrane by maintaining high concentrations of multiple endocytic proteins, including dynamin, at synapses.  相似文献   

8.
Cerebellar Purkinje neurons maintain high firing rates but their synaptic terminals depress only moderately, raising the question of how vesicle depletion is minimized. To identify mechanisms that limit synaptic depression, we evoked 100 Hz trains of GABAergic inhibitory postsynaptic currents (IPSCs) in cerebellar nuclear neurons by stimulating Purkinje axons in mouse brain slices. The paired-pulse ratio (IPSC(2)/IPSC(1)) of the total IPSC was approximately 1 and the steady-state ratio (IPSC(20)/IPSC(1)) was approximately 0.5, suggesting a high response probability of postsynaptic receptors, without an unusually high release probability. Three-dimensional electron microscopic reconstructions of Purkinje boutons revealed multiple active zones without intervening transporters, suggestive of "spillover"-mediated transmission. Simulations of boutons with 10-16 release sites, in which transmitter from any site can reach all receptors opposite the bouton, replicated multiple-pulse depression during normal, high, and low presynaptic Ca influx. These results suggest that release from multiple-site boutons limits depletion-based depression, permitting prolonged, high-frequency inhibition at corticonuclear synapses.  相似文献   

9.
Endophilin is a membrane-associated protein required for endocytosis of synaptic vesicles. Two models have been proposed for endophilin: that it alters lipid composition in order to shape membranes during endocytosis, or that it binds the polyphosphoinositide phosphatase synaptojanin and recruits this phosphatase to membranes. In this study, we demonstrate that the unc-57 gene encodes the Caenorhabditis elegans ortholog of endophilin A. We demonstrate that endophilin is required in C. elegans for synaptic vesicle recycling. Furthermore, the defects observed in endophilin mutants closely resemble those observed in synaptojanin mutants. The electrophysiological phenotype of endophilin and synaptojanin double mutants are virtually identical to the single mutants, demonstrating that endophilin and synaptojanin function in the same pathway. Finally, endophilin is required to stabilize expression of synaptojanin at the synapse. These data suggest that endophilin is an adaptor protein required to localize and stabilize synaptojanin at membranes during synaptic vesicle recycling.  相似文献   

10.
We describe the isolation and characterization of nwk (nervous wreck), a temperature-sensitive paralytic mutant that causes excessive growth of larval neuromuscular junctions (NMJs), resulting in increased synaptic bouton number and branch formation. Ultrastructurally, mutant boutons have reduced size and fewer active zones, associated with a reduction in synaptic transmission. nwk encodes an FCH and SH3 domain-containing adaptor protein that localizes to the periactive zone of presynaptic terminals and binds to the Drosophila ortholog of Wasp (Wsp), a key regulator of actin polymerization. wsp null mutants display synaptic overgrowth similar to nwk and enhance the nwk morphological phenotype in a dose-dependent manner. Evolutionarily, Nwk belongs to a previously undescribed family of adaptor proteins that includes the human srGAPs, which regulate Rho activity downstream of Robo receptors. We propose that Nwk controls synapse morphology by regulating actin dynamics downstream of growth signals in presynaptic terminals.  相似文献   

11.
The extent to which a "kiss-and-run" mode of endocytosis contributes to synaptic-vesicle recycling remains controversial. The only genetic evidence for kiss-and-run at the synapse comes from mutations in the genes encoding synaptojanin and endophilin, proteins that together function to uncoat vesicles in classical clathrin-mediated endocytosis. Here we have characterized the endocytosis that persists in null alleles of Drosophila synaptojanin and endophilin. In response to high-frequency stimulation, the synaptic-vesicle pool can be reversibly depleted in these mutants. Recovery from this depletion is slow and indicates the persistence of an impaired form of classical endocytosis. Steady-state exocytosis rates reveal that endocytosis saturates in mutant neuromuscular terminals at approximately 80 vesicles/s, 10%-20% of the wild-type rate. Analyses of quantal size, FM1-43 loading, and dynamin function further demonstrate that, even in the absence of synaptojanin or endophilin, vesicles undergo full fusion and re-formation. Therefore, no genetic evidence remains to indicate that synaptic vesicles undergo kiss-and-run.  相似文献   

12.
Synaptojanin is a polyphosphoinositide phosphatase that is found at synapses and binds to proteins implicated in endocytosis. For these reasons, it has been proposed that synaptojanin is involved in the recycling of synaptic vesicles. Here, we demonstrate that the unc-26 gene encodes the Caenorhabditis elegans ortholog of synaptojanin. unc-26 mutants exhibit defects in vesicle trafficking in several tissues, but most defects are found at synaptic termini. Specifically, we observed defects in the budding of synaptic vesicles from the plasma membrane, in the uncoating of vesicles after fission, in the recovery of vesicles from endosomes, and in the tethering of vesicles to the cytoskeleton. Thus, these results confirm studies of the mouse synaptojanin 1 mutants, which exhibit defects in the uncoating of synaptic vesicles (Cremona, O., G. Di Paolo, M.R. Wenk, A. Luthi, W.T. Kim, K. Takei, L. Daniell, Y. Nemoto, S.B. Shears, R.A. Flavell, D.A. McCormick, and P. De Camilli. 1999. Cell. 99:179-188), and further demonstrate that synaptojanin facilitates multiple steps of synaptic vesicle recycling.  相似文献   

13.
Zito K  Parnas D  Fetter RD  Isacoff EY  Goodman CS 《Neuron》1999,22(4):719-729
The glutamatergic neuromuscular junction (NMJ) in Drosophila adds new boutons and branches during larval development. We generated transgenic fruit flies that express a novel green fluorescent membrane protein at the postsynaptic specialization, allowing for repeated noninvasive confocal imaging of synapses in live, developing larvae. As synapses grow, existing synaptic boutons stretch apart and new boutons insert between them; in addition, new boutons are added at the ends of existing strings of boutons. Some boutons are added de novo, while others bud from existing boutons. New branches form as multiple boutons bud from existing boutons. Nascent boutons contain active zones, T bars, and synaptic vesicles; we observe no specialized growth structures. Some new boutons exhibit a lower level of Fasciclin II, suggesting that the levels of this synaptic cell adhesion molecule vary locally during synaptic growth.  相似文献   

14.
Endocytosis of AMPA receptors and other postsynaptic cargo occurs at endocytic zones (EZs), stably positioned sites of clathrin adjacent to the postsynaptic density (PSD). The tight localization of postsynaptic endocytosis is thought to control spine composition and regulate synaptic transmission. However, the mechanisms that situate the EZ near the PSD and the role of spine endocytosis in synaptic transmission are unknown. Here, we report that a physical link between dynamin-3 and the postsynaptic adaptor Homer positions the EZ near the PSD. Disruption of dynamin-3 or its interaction with Homer uncouples the PSD from the EZ, resulting in synapses lacking postsynaptic clathrin. Loss of the EZ leads to a loss of synaptic AMPA receptors and reduced excitatory synaptic transmission that corresponds with impaired synaptic recycling. Thus, a physical link between the PSD and the EZ ensures localized endocytosis and recycling by recapturing and maintaining a proximate pool of cycling AMPA receptors.  相似文献   

15.
In Drosophila, the larval neuromuscular junction is particularly tractable for studying how synapses develop and function. In contrast to vertebrate central synapses, each presynaptic motor neuron and postsynaptic muscle cell is unique and identifiable, and the wiring circuit is invariant. Thus, the full power of Drosophila genetics can be brought to bear on a single, reproducibly identifiable, synaptic terminal. Each individual neuromuscular junction encompasses hundreds of synaptic neurotransmitter release sites housed in a chain of synaptic boutons. Recent advances have increased our understanding of the mechanisms that shape the development of both individual synapses--that is, the transmitter release sites including active zones and their apposed glutamate receptor clusters--and the whole synaptic terminal that connects a pre- and post-synaptic cell.  相似文献   

16.
Mani M  Lee SY  Lucast L  Cremona O  Di Paolo G  De Camilli P  Ryan TA 《Neuron》2007,56(6):1004-1018
Phosphoinositides have been implicated in synaptic vesicle recycling largely based on studies of enzymes that regulate phosphoinositide synthesis and hydrolysis. One such enzyme is synaptojanin1, a multifunctional protein conserved from yeast to humans, which contains two phosphoinositol phosphatase domains and a proline-rich domain. Genetic ablation of synaptojanin1 leads to pleiotropic defects in presynaptic function, including accumulation of free clathrin-coated vesicles and delayed vesicle reavailability, implicating this enzyme in postendocytic uncoating of vesicles. To further elucidate the role of synaptojanin1 at nerve terminals, we performed quantitative synaptic vesicle recycling assays in synj1(-/-) neurons. Our studies show that synaptojanin1 is also required for normal vesicle endocytosis. Defects in both endocytosis and postendocytic vesicle reavailability can be fully restored upon reintroduction of synaptojanin1. However, expression of synaptojanin1 with mutations abolishing catalytic activity of each phosphatase domain reveals that the dual action of both domains is required for normal synaptic vesicle internalization and reavailability.  相似文献   

17.
Calcium-activated protein for secretion (CAPS) is proposed to play an essential role in Ca2+-regulated dense-core vesicle exocytosis in vertebrate neuroendocrine cells. Here we report the cloning, mutation, and characterization of the Drosophila ortholog (dCAPS). Null dCAPS mutants display locomotory deficits and complete embryonic lethality. The mutant NMJ reveals a 50% loss in evoked glutamatergic transmission, and an accumulation of synaptic vesicles at active zones. Importantly, dCAPS mutants display a highly specific 3-fold accumulation of dense-core vesicles in synaptic terminals, which was not observed in mutants that completely arrest synaptic vesicle exocytosis. Targeted transgenic CAPS expression in identified motoneurons fails to rescue dCAPS neurotransmission defects, demonstrating a cell nonautonomous role in synaptic vesicle fusion. We conclude that dCAPS is required for dense-core vesicle release and that a dCAPS-dependent mechanism modulates synaptic vesicle release at glutamatergic synapses.  相似文献   

18.
Crustacean and insect neuromuscular junctions typically include numerous small synapses, each of which usually contains one or more active zones, which possess voltage-sensitive calcium channels and are specialized for release of synaptic vesicles. Strength of transmission (the number of quantal units released per synapse by a nerve impulse) varies greatly among different endings of individual neurons, and from one neuron to another. Ultrastructural features of synapses account for some of the physiological differences at endings of individual neurons. The nerve terminals that release more neurotransmitter per impulse have a higher incidence of synapses with more than one active zone, and this is correlated with more calcium build-up during stimulation. However, comparison of synaptic structure in neurons with different physiological phenotypes indicates no major differences in structure that could account for their different levels of neurotransmitter release per impulse, and release per synapse differs among neurons despite similar calcium build-up in their terminals during stimulation. The evidence indicates differences in calcium sensitivity of the release process among neurons as an aspect of physiological specialization.  相似文献   

19.
The formation of synapses and the proper construction of neural circuits depend on signaling pathways that regulate cytoskeletal structure and dynamics. After the mutual recognition of a growing axon and its target, multiple signaling pathways are activated that regulate cytoskeletal dynamics to determine the morphology and strength of the connection. By analyzing Drosophila mutations in the cytoplasmic FMRP interacting protein Cyfip, we demonstrate that this component of the WAVE complex inhibits the assembly of filamentous actin (F-actin) and thereby regulates key aspects of synaptogenesis. Cyfip regulates the distribution of F-actin filaments in presynaptic neuromuscular junction (NMJ) terminals. At cyfip mutant NMJs, F-actin assembly was accelerated, resulting in shorter NMJs, more numerous satellite boutons, and reduced quantal content. Increased synaptic vesicle size and failure to maintain excitatory junctional potential amplitudes under high-frequency stimulation in cyfip mutants indicated an endocytic defect. cyfip mutants exhibited upregulated bone morphogenetic protein (BMP) signaling, a major growth-promoting pathway known to be attenuated by endocytosis at the Drosophila NMJ. We propose that Cyfip regulates synapse development and endocytosis by inhibiting actin assembly.  相似文献   

20.
Endophilin is a membrane-binding protein with curvature-generating and -sensing properties that participates in clathrin-dependent endocytosis of synaptic vesicle membranes. Endophilin also binds the GTPase dynamin and the phosphoinositide phosphatase synaptojanin and is thought to coordinate constriction of coated pits with membrane fission (via dynamin) and subsequent uncoating (via synaptojanin). We show that although synaptojanin is recruited by endophilin at bud necks before fission, the knockout of all three mouse endophilins results in the accumulation of clathrin-coated vesicles, but not of clathrin-coated pits, at synapses. The absence of endophilin impairs but does not abolish synaptic transmission and results in perinatal lethality, whereas partial endophilin absence causes severe neurological defects, including epilepsy and neurodegeneration. Our data support a model in which endophilin recruitment to coated pit necks, because of its curvature-sensing properties, primes vesicle buds for subsequent uncoating after membrane fission, without being critically required for the fission reaction itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号