首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of multimeric complexes by membrane-type 1 matrix metalloproteinase (MT1-MMP) may facilitate its autocatalytic inactivation or proMMP-2 activation on the cell surface. To characterize these processes, we expressed various glutathione S-transferase/MT1-MMP fusion proteins in human HT-1080 fibrosarcoma cells and SV40-transformed lung fibroblasts and analyzed their effects on MT1-MMP activity and potential homophilic interactions. We report here that MT1-MMP is expressed on the cell surface as oligomeric 200--240-kDa complexes containing both the active 60-kDa and autocatalytically processed 43-kDa species. Overexpression of a glutathione S-transferase/MT1-MMP fusion protein containing the transmembrane and cytoplasmic domains of MT1-MMP inhibited the phorbol 12-myristate 13-acetate-induced autocatalytic cleavage of endogenous MT1-MMP to the 43-kDa species, but not proMMP-2 activation. On the other hand, a similar fusion protein with the hemopexin, transmembrane, and cytoplasmic domains inhibited proMMP-2 activation in a dominant-negative fashion. These results suggest that both the autocatalytic cleavage of MT1-MMP and proMMP-2 activation may be regulated by oligomerization through the cytoplasmic and hemopexin domains. Indeed, either domain, when attached to the cell membrane by a transmembrane domain, formed stable homophilic complexes. Copurification of MT1-MMP with these fusion proteins correlated with their cell-surface co-localization. Thus, MT1-MMP oligomerization through the hemopexin, transmembrane, and cytoplasmic domains controls its catalytic activity.  相似文献   

2.
On the cell surface, the 59-kDa membrane type 1-matrix metalloproteinase (MT1-MMP) activates the 72-kDa progelatinase A (MMP-2) after binding the tissue inhibitor of metalloproteinases (TIMP)-2. A 44-kDa remnant of MT1-MMP, with an N terminus at Gly(285), is also present on the cell after autolytic shedding of the catalytic domain from the hemopexin carboxyl (C) domain, but its role in gelatinase A activation is unknown. We investigated intermolecular interactions in the gelatinase A activation complex using recombinant proteins, domains, and peptides, yeast two-hybrid analysis, solid- and solution-phase assays, cell culture, and immunocytochemistry. A strong interaction between the TIMP-2 C domain (Glu(153)-Pro(221)) and the gelatinase A hemopexin C domain (Gly(446)-Cys(660)) was demonstrated by the yeast two-hybrid system. Epitope masking studies showed that the anionic TIMP-2 C tail lost immunoreactivity after binding, indicating that the tail was buried in the complex. Using recombinant MT1-MMP hemopexin C domain (Gly(285)-Cys(508)), no direct role for the 44-kDa form of MT1-MMP in cell surface activation of progelatinase A was found. Exogenous hemopexin C domain of gelatinase A, but not that of MT1-MMP, blocked the cleavage of the 68-kDa gelatinase A activation intermediate to the fully active 66-kDa enzyme by concanavalin A-stimulated cells. The MT1-MMP hemopexin C domain did not form homodimers nor did it bind the gelatinase A hemopexin C domain, the C tail of TIMP-2, or full-length TIMP-2. Hence, the ectodomain of the remnant 44-kDa form of MT1-MMP appears to play little if any role in the activation of gelatinase A favoring the hypothesis that it accumulates on the cell surface as an inactive, stable degradation product.  相似文献   

3.
The hemopexin-like domain of membrane-type matrix metalloproteinase-1 (MT1-MMP) enables MT1-MMP to form oligomers that facilitate the activation of pro-matrix metalloproteinase-2 (pro-MMP-2) at the cell surface. To investigate the role of the MT1-MMP hemopexin domain in the trafficking of MT1-MMP to the cell surface we have examined the activity of two MT1-MT4-MMP chimaeras in which the hemopexin domain of MT1-MMP has been replaced with that of human or mouse MT4-MMP. We show that MT1-MMP bearing the hemopexin domain of MT4-MMP was incapable of activating pro-MMP-2 or degrading gelatin in cell based assays. Furthermore, cell surface biotinylation and indirect immunofluorescence show that transiently expressed MT1-MT4-MMP chimaeras failed to reach the plasma membrane and were retained in the endoplasmic reticulum. Functional activity could be restored by replacing the MT4-MMP hemopexin domain with the wild-type MT1-MMP hemopexin domain. Subsequent analysis with an antibody specifically recognising the propeptide of MT1-MMP revealed that the propeptides of the MT1-MT4-MMP chimaeras failed to undergo proper processing. It has previously been suggested that the hemopexin domain of MT4-MMP could exert a regulatory mechanism that prevents MT4-MMP from activating pro-MMP-2. In this report, we demonstrate unambiguously that MT1-MT4-MMP chimaeras do not undergo normal trafficking and are not correctly processed to their fully active forms and, as a consequence, they are unable to activate pro-MMP-2 at the cell surface.  相似文献   

4.
MT1-MMP is a potent collagenase not only required for skeletal development but also implicated in tumor invasion and metastasis. The mechanism through which cellsdeploy MT1-MMP to mediate collagenolysis remains largely unknown. C-terminally truncated MT1-MMP lacking its transmembrane and cytoplasmic domains, although proteolytic active in purified forms, is known to be deficient in cell-mediated proMMP2 activation and collagenolysis, suggesting that cells regulate its activity through both domains. Indeed, the cytoplasmic domain is recognized by the trafficking machinery that mediates its internalization and recycling. Here we demonstrate that its transmembrane domain can be functionally substituted by the glycosylphosphatidylinositol (GPI)-anchor of MT6-MMP. The GPI-anchored MT1-MMP, or MT1-GPI, activates proMMP2 on the cell surface and promotes cell growth in a three-dimensional type I collagen matrix. On the other hand, a GPI-anchored MMP13 with a functional furin activation signal fails to promote cell growth in a three-dimensional collagen matrix, whereas remaining competent in collagenolysis on a two-dimensional collagen matrix under serum-free conditions. alpha(2) macroglobulin (alpha(2)M) or serum is sufficient to inhibit the collagenase activity of GPI-anchored active MMP13. Our results suggest that both membrane-tethering and proteolytic activity encoded by MT1-MMP are required for its ability to promote cell growth and invasion in a three-dimensional collagen matrix.  相似文献   

5.
Membrane-type matrix metalloproteinase-1 (MT1-MMP) plays a key role in tumor invasion and metastasis by degrading the extracellular matrix and activating proMMP2. Here we show that the conserved hemopexin domain is required for MT1-MMP-mediated invasion and growth in three-dimensional type I collagen matrix but not proMMP2 activation. Deletion of the hemopexin domains in MT1-, MT2-, MT3-, MT5-, and MT6-MMP does not impair their abilities to activate proMMP2. In fact, hemopexin-less MT5- and MT6-MMP activate proMMP2 better than their wild type counterparts. On the other hand, hemopexin-less MT1-MMP fails to promote cell invasion into type I collagen but retains the capacity to enhance the growth of Madin-Darby canine kidney cells as cysts in three-dimensional collagen matrix. Moreover, the hemopexin domain is also required for MT1-MMP-mediated invasion/scattering of MCF-7 cells in three-dimensional collagen matrix. Because growth and invasion in a three-dimensional model may correlate with tumor invasiveness in vivo, our data suggest that the hemopexin domains of MT-MMPs should be targeted for the development of anti-cancer therapies by employing screening assays developed for three-dimensional models rather than their enzymatic activity toward proMMP2.  相似文献   

6.
Up-regulation of the collagenolytic membrane type-1 matrix metalloproteinase (MT1-MMP) leads to increased MMP2 (gelatinase A) activation and MT1-MMP autolysis. The autocatalytic degradation product is a cell surface 44-kDa fragment of MT1-MMP (Gly(285)-Val(582)) in which the ectodomain consists of only the linker, hemopexin C domain and the stalk segment found before the transmembrane sequence. In the collagenases, hemopexin C domain exosites bind native collagen, which is required for triple helicase activity during collagen cleavage. Here we investigated the collagen binding properties and the role of the hemopexin C domain of MT1-MMP and of the 44-kDa MT1-MMP ectodomain in collagenolysis. Recombinant proteins, MT1-LCD (Gly(285)-Cys(508)), consisting of the linker and the hemopexin C domain, and MT1-CD (Gly(315)-Cys(508)), which consists of the hemopexin C domain only, were found to bind native type I collagen but not gelatin. Functionally, MT1-LCD inhibited collagen-induced MMP2 activation in fibroblasts, suggesting that interactions between collagen and endogenous MT1-MMP directly stimulate the cellular activation of pro-MMP2. MT1-LCD, but not MT1-CD, also blocked the cleavage of native type I collagen by MT1-MMP in vitro, indicating an important role for the MT1-MMP linker region in triple helicase activity. Similarly, soluble MT1-LCD, but not MT1-CD or peptide analogs of the MT1-MMP linker, reduced the invasion of type I collagen matrices by MDA-MB-231 cells as did the expression of recombinant 44-kDa MT1-MMP on the cell surface. Together, these studies demonstrate that generation of the 44-kDa MT1-MMP autolysis product regulates collagenolytic activity and subsequent invasive potential, suggesting a novel feedback mechanism for the control of pericellular proteolysis.  相似文献   

7.
8.
Because of their important function, matrix metalloproteinases (MMPs) are promising drug targets in multiple diseases, including malignancies. The structure of MMPs includes a catalytic domain, a hinge, and a hemopexin domain (PEX), which are followed by a transmembrane and cytoplasmic tail domains or by a glycosylphosphatidylinositol linker in membrane-type MMPs (MT-MMPs). TIMPs-1, -2, -3, and -4 are potent natural regulators of the MMP activity. These are the inhibitory N-terminal and the non-inhibitory C-terminal structural domains in TIMPs. Based on our structural modeling, we hypothesized that steric clashes exist between the non-inhibitory C-terminal domain of TIMPs and the PEX of MMPs. Conversely, a certain mobility of the PEX relative to the catalytic domain is required to avoid these obstacles. Because of its exceedingly poor association constant and, in contrast with TIMP-2, TIMP-1 is inefficient against MT1-MMP. We specifically selected an MT1-MMP·TIMP-1 pair to test our hypothesis, because any improvement of the inhibitory potency would be readily recorded. We characterized the domain-swapped MT1-MMP chimeras in which the PEX of MMP-2 (that forms a complex with TIMP-2) and of MMP-9 (that forms a complex with TIMP-1) replaced the original PEX in the MT1-MMP structure. In contrast with the wild-type MT1-MMP, the diverse proteolytic activities of the swapped-PEX chimeras were then inhibited by both TIMP-1 and TIMP-2. Overall, our studies suggest that the structural parameters of both domains of TIMPs have to be taken into account for their re-engineering to harness the therapeutic in vivo potential of the novel TIMP-based MMP antagonists with constrained selectivity.  相似文献   

9.
Membrane-type-1 matrix metalloproteinase (MT1-MMP) has transmembrane and cytoplasmic domains, which target it to invasive fronts. We analyzed the role of the cytoplasmic tail by expressing wild type MT1-MMP and three mutants with progressively truncated C termini in human Bowes melanoma cells. We examined gelatinase A activation and the localization and processing of recombinant proteins in stable cell clones using gelatin zymography, immunoblotting, and immunofluorescence. Cell invasion was analyzed in vitro by Matrigel invasion assays. Gelatinase A was activated in all cell clones. However, the localization of MT1-MMP to the leading edge of migrating cells and cell invasion through Matrigel were strongly enhanced only in cells expressing either wild type or truncated MT1-MMP lacking 6 C-terminal amino acid residues (Delta577). Truncations of 10 or 16 amino acid residues in the cytoplasmic domain (Delta567 and Delta573, respectively) disturbed MT1-MMP localization. The expression of wild type and Delta577 MT1-MMPs induced also their cleavage to 43-kDa cell surface forms and the release of soluble, approximately 20-kDa N-terminal fragments containing the catalytic center. A synthetic MMP inhibitor but not a gelatinase inhibitor prevented the processing, suggesting that autocatalytic cleavage occurs. Purified soluble MT1-MMP was also autoproteolytically processed to 43- and 20-kDa forms in vitro. Our results indicate that the cytoplasmic domain has an important role in cell invasion by controlling both the targeting and degradation/turnover of MT1-MMP.  相似文献   

10.
Substrate degradation and cell migration are key steps in cancer metastasis. Membrane-type 1-matrix metalloproteinase (MT1-MMP) has been linked with these processes. Using the fluorescein isothiocyanate (FITC)-labeled fibronectin degradation assay combined with the phagokinetic cell migration assay, structure-function relationships of MT1-MMP were studied. Our data indicate that MT1-MMP initiates substrate degradation and enhances cell migration; cell migration occurs as a concurrent but independent event. Using recombinant DNA approaches, we demonstrated that the hemopexin-like domain and a nonenzymatic component of the catalytic domain of MT1-MMP are essential for MT1-MMP-mediated cell migration. Because the cytoplasmic domain of MT1-MMP was not required for MT1-MMP-mediated fibronectin degradation and cell migration, it is proposed that cross-talk between the hemopexin domain of MT1-MMP and adjacent cell surface molecules is responsible for outside-in signaling. Employing cDNAs encoding dominant negative mutations, we demonstrated that Rac1 participates in the MT1-MMP signal transduction pathway. These data demonstrated that each domain of MT1-MMP plays a distinct role in substrate degradation and cell migration.  相似文献   

11.
The important and distinct contribution that membrane type 2 (MT2)-matrix metalloproteinase (MMP) makes to physiological and pathological processes is now being recognized. This contribution may be mediated in part through MMP-2 activation by MT2-MMP. Using Timp2-/- cells, we previously demonstrated that MT2-MMP activates MMP-2 to the fully active form in a pathway that is TIMP-2-independent but MMP-2 hemopexin carboxyl (C) domain-dependent. In this study cells expressing MT2-MMP as well as chimera proteins in which the C-terminal half of MT2-MMP and MT1-MMP were exchanged showed that the MT2-MMP catalytic domain has a higher propensity than that of MT1-MMP to initiate cleavage of the MMP-2 prodomain in the absence of TIMP-2. Although we demonstrate that MT2-MMP is a weak collagenase, this first activation cleavage was enhanced by growing the cells in type I collagen gels. The second activation cleavage to generate fully active MMP-2 was specifically enhanced by a soluble factor expressed by Timp2-/- cells and was MT2-MMP hemopexin C domain-dependent; however, the RGD sequence within this domain was not involved. Interestingly, in the presence of TIMP-2, a MT2-MMP.MMP-2 trimolecular complex formed, but activation was not enhanced. Similarly, TIMP-3 did not promote MT2-MMP-mediated MMP-2 activation but inhibited activation at higher concentrations. This study demonstrates the influence that both the catalytic and hemopexin C domains of MT2-MMP exert in determining TIMP independence in MMP-2 activation. In tissues or pathologies characterized by low TIMP-2 expression, this pathway may represent an alternative means of rapidly generating low levels of active MMP-2.  相似文献   

12.
Membrane-type 1 matrix metalloproteinase (MT1-MMP), a transmembrane proteinase with a short cytoplasmic domain and an extracellular catalytic domain, controls a variety of physiological and pathological processes through the proteolytic degradation of extracellular or transmembrane proteins. MT1-MMP forms a complex on the cell membrane with its physiological protein inhibitor, tissue inhibitor of metalloproteinases-2 (TIMP-2). Here we show that, in addition to extracellular proteolysis, MT1-MMP and TIMP-2 control cell proliferation and migration through a non-proteolytic mechanism. TIMP-2 binding to MT1-MMP induces activation of ERK1/2 by a mechanism that does not require the proteolytic activity and is mediated by the cytoplasmic tail of MT1-MMP. MT1-MMP-mediated activation of ERK1/2 up-regulates cell migration and proliferation in vitro independently of extracellular matrix proteolysis. Proteolytically inactive MT1-MMP promotes tumor growth in vivo, whereas proteolytically active MT1-MMP devoid of cytoplasmic tail does not have this effect. These findings illustrate a novel role for MT1-MMP-TIMP-2 interaction, which controls cell functions by a mechanism independent of extracellular matrix degradation.  相似文献   

13.
A C-terminal truncated form of membrane-type 4 matrix metalloproteinase (MT4-MMP; MMP 17), lacking the hemopexin-like and transmembrane domain, was expressed in Escherichia coli. The catalytic domain was produced by tryptic activation of the recombinant proenzyme and proved to be catalytically active towards the fluorogenic substrate for matrix metalloproteinases (7-methoxycoumarin-4-yl) acetyl-Pro-Leu-Gly-Leu(3-(2,4-dinitrophenyl)-L-2,3-diaminopro-p ionyl)-Ala-Arg-NH2. In contrast to the other three MT-MMPs (MT1-, MT2-, and MT3-MMP), the catalytic domain of MT4-MMP does not activate progelatinase A, nor does it hydrolyze one of the offered extracellular matrix (ECM) proteins, such as collagen types I, II, III, IV, and V, gelatin, fibronectin, laminin or decorin. TIMP-1, a poor inhibitor of MT1-, MT2- and MT3-MMP, suppresses MT4-MMP activity effectively. The progelatinase A/TIMP-2 complex that usually reacts like TIMP-2 also inhibits MT4-MMP. TIMP-2, a strong inhibitor of other MT-MMPS, inhibits MT4-MMP at low concentrations. With increasing TIMP-2 concentration, however, activity passes through a minimum and then increases until at high TIMP-2 concentration the activity is the same as in the absence of TIMP-2. TIMP-1 or the progelatinase A/TIMP-2 complex do not prevent reactivation of MT4-MMP catalytic domain at high TIMP-2 concentrations.  相似文献   

14.
Membrane-type 1 matrix metalloproteinase (MT1-MMP), a transmembrane proteinase with an extracellular catalytic domain and a short cytoplasmic tail, degrades a variety of extracellular matrix (ECM) components. In addition, MT1-MMP activates intracellular signaling through proteolysis-dependent and independent mechanisms. We have previously shown that binding of tissue inhibitor of metalloproteinases-2 (TIMP-2) to MT1-MMP controls cell proliferation and migration, as well as tumor growth in vivo by activating the Ras—extracellular signal regulated kinase-1 and -2 (ERK1/2) pathway through a mechanism that requires the cytoplasmic but not the proteolytic domain of MT1-MMP. Here we show that in MT1-MMP expressing cells TIMP-2 also induces rapid and sustained activation of AKT in a dose- and time-dependent manner and by a mechanism independent of the proteolytic activity of MT1-MMP. Fibroblast growth factor receptor-1 mediates TIMP-2 induction of ERK1/2 but not of AKT activation; however, Ras activation is necessary to transduce the TIMP-2-activated signal to both the ERK1/2 and AKT pathways. ERK1/2 and AKT activation by TIMP-2 binding to MT1-MMP protects tumor cells from apoptosis induced by serum starvation. Conversely, TIMP-2 upregulates apoptosis induced by three-dimensional type I collagen in epithelial cancer cells. Thus, TIMP-2 interaction with MT1-MMP provides tumor cells with either pro- or anti-apoptotic signaling depending on the extracellular environment and apoptotic stimulus.  相似文献   

15.
Activation of proMMP-2 and cell surface collagenolysis are important activities of membrane-type 1 matrix metalloproteinase (MT1-MMP) to promote cell migration in tissue, and these activities are regulated by homodimerization of MT1-MMP on the cell surface. In this study, we have identified the transmembrane domain as a second dimer interface of MT1-MMP in addition to the previously identified hemopexin domain. Our analyses indicate that these two modes of dimerization have different roles; transmembrane-dependent dimerization is critical for proMMP-2 activation, whereas hemopexin-dependent dimerization is important for degradation of collagen on the cell surface. Our finding provides new insight into the potential molecular arrangement of MT1-MMP contributing to its function on the cell surface.  相似文献   

16.
Among the five membrane-type matrix metalloproteinases (MT-MMPs), MT1-, MT2-, MT3-, and MT5-MMPs have about a 20-amino acid cytoplasmic tail following the transmembrane domain. In contrast, a putative transmembrane domain of MT4-MMP locates at the very C-terminal end, and the expected cytoplasmic tail is very short or nonexistent. Such sequences often act as a glycosylphosphatidylinositol (GPI) anchoring signal rather than as a transmembrane domain. We thus examined the possibility that MT4-MMP is a GPI-anchored proteinase. Our results showed that [(3)H]ethanolamine, which can be incorporated into the GPI unit, specifically labeled the MT4-MMP C-terminal end in a sequence-dependent manner. In addition, phosphatidylinositol-specific phospholipase C treatment released the MT4-MMP from the surface of transfected cells. These results indicate that MT4-MMP is the first GPI-anchored proteinase in the MMP family. During cultivation of the transfected cells, MT4-MMP appeared to be shed from the cell surface by the action of an endogenous metalloproteinase. GPI anchoring of MT4-MMP on the cell surface indicates a unique biological function and character for this proteinase.  相似文献   

17.
Cells are regulated by many different means, and there is more and more evidence emerging that changes in the microenvironment greatly affect cell function. MT1-MMP is a type I transmembrane proteinase which participates in pericellular proteolysis of extracellular matrix (ECM) macromolecules. The enzyme is cellular collagenase essential for skeletal development, cancer invasion, growth, and angiogenesis. MT1-MMP promotes cell invasion and motility by pericellular ECM degradation, shedding of CD44 and syndecan1, and by activating ERK. Thus MT1-MMP is one of the factors that influence the cellular microenvironment and thereby affect cell-signaling pathways and eventually alters cellular behavior. As a proteinase, MT1-MMP is regulated by inhibitors, but it also requires formation of a homo-oligomer complex, localization to migration front of the cells, and internalization to become a "functionally active" cell function modifier. Developing new means to inhibit "functional activity" of MT1-MMP may be a new direction to establish treatments for the diseases that MT1-MMP mediates such as cancer and rheumatoid arthritis.  相似文献   

18.
The membrane associated MMP, MT1-MMP, is a critical pericellular protease involved in tumour cell invasion and angiogenesis and is highly up-regulated in numerous human cancers. It therefore represents an exciting new therapeutic cancer-specific target. We have generated recombinant human scFv antibodies against the non-catalytic, hemopexin domain of MT1-MMP that modulate its interactions with collagen. One of these is an effective inhibitor of the invasive capacity of cancer cells and of angiogenesis in model systems. This demonstrates that targeting sites outside the catalytic domain presents a potential novel approach to proteinase inhibition that could have applications in cancer therapeutics.  相似文献   

19.
Itoh Y  Takamura A  Ito N  Maru Y  Sato H  Suenaga N  Aoki T  Seiki M 《The EMBO journal》2001,20(17):4782-4793
Activation of proMMP-2 by MT1-MMP is considered to be a critical event in cancer cell invasion. In the activation step, TIMP-2 bound to MT1-MMP on the cell surface acts as a receptor for proMMP-2. Subsequently, adjacent TIMP-2-free MT1-MMP activates the proMMP-2 in the ternary complex. In this study, we demonstrate that MT1-MMP forms a homophilic complex through the hemopexin-like (PEX) domain that acts as a mechanism to keep MT1-MMP molecules close together to facilitate proMMP-2 activation. Deletion of the PEX domain in MT1-MMP, or swapping the domain with the one derived from MT4-MMP, abolished the ability to activate proMMP-2 on the cell surface without affecting the proteolytic activities. In addition, expression of the mutant MT1-MMP lacking the catalytic domain (MT1PEX-F) efficiently inhibited complex formation of the full-length enzymes and activation of pro MMP-2. Furthermore, expression of MT1PEX-F inhibited proMMP-2 activation and Matrigel invasion activity of invasive human fibrosarcoma HT1080 cells. These findings elucidate a new function of the PEX domain: regulating MT1-MMP activity on the cell surface, which accelerates cellular invasiveness in the tissue.  相似文献   

20.
Matrix metalloproteinases (MMPs) are a large family of extracellular or membrane-bound proteases. Their ability to cleave extracellular matrix (ECM) proteins has implicated a role in ECM remodeling to affect cell fate and behavior during development and in pathogenesis. We have shown previously that membrane-type 1 (MT1)-MMP [corrected] is coexpressed temporally and spatially with the MMP gelatinase A (GelA) in all cell types of the intestine and tail where GelA is expressed during Xenopus laevis metamorphosis, suggesting a cooperative role of these MMPs in development. Here, we show that Xenopus GelA and MT1-MMP interact with each other in vivo and that overexpression of MT1-MMP and GelA together in Xenopus embryos leads to the activation of pro-GelA. We further show that both MMPs are expressed during Xenopus embryogenesis, although MT1-MMP gene is expressed earlier than the GelA gene. To investigate whether the embryonic MMPs play a role in development, we have studied whether precocious expression of these MMPs alters development. Our results show that overexpression of both MMPs causes developmental abnormalities and embryonic death by a mechanism that requires the catalytic activity of the MMPs. More importantly, we show that coexpression of wild type MT1-MMP and GelA leads to a cooperative effect on embryonic development and that this cooperative effect is abolished when the catalytic activity of either MMP is eliminated through a point mutation in the catalytic domain. Thus, our studies support a cooperative role of these MMPs in embryonic development, likely through the activation of pro-GelA by MT1-MMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号