首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boer JL  Hausinger RP 《Biochemistry》2012,51(11):2298-2308
The Ni-containing active site of Klebsiella aerogenes urease is assembled through the concerted action of the UreD, UreE, UreF, and UreG accessory proteins. UreE functions as a metallochaperone that delivers Ni to a UreD-UreF-UreG complex bound to urease apoprotein, with UreG serving as a GTPase during enzyme activation. This study focuses on the role of UreF, previously proposed to act as a GTPase activating protein (GAP) of UreG. Sixteen conserved UreF surface residues that may play roles in protein-protein interactions were independently changed to Ala. When produced in the context of the entire urease gene cluster, cell-free extracts of nine site-directed mutants had less than 10% of the wild-type urease activity. Enrichment of the variant forms of UreF, as the UreE-F fusion proteins, uniformly resulted in copurification of UreD and urease apoprotein, whereas UreG bound to only a subset of the species. Notably, weakened interaction with UreG correlated with the low-activity mutants. The affected residues in UreF map to a distinct surface on the crystal structure, defining the UreG binding site. In contrast to the hypothesis that UreF is a GAP, the UreD-UreF-UreG-urease apoprotein complex containing K165A UreF exhibited significantly greater levels of GTPase activity than that containing the wild-type protein. Additional studies demonstrated the UreG GTPase activity was largely uncoupled from urease activation for the complex containing this UreF variant. Further experiments with these complexes provided evidence that UreF gates the GTPase activity of UreG to enhance the fidelity of urease metallocenter assembly, especially in the presence of the noncognate metal Zn.  相似文献   

2.
Synthesis of active Klebsiella aerogenes urease requires four accessory proteins to generate, in a GTP-dependent process, a dinuclear nickel active site with the metal ions bridged by a carbamylated lysine residue. The UreD and UreF accessory proteins form stable complexes with urease apoprotein, comprised of UreA, UreB, and UreC. The sites of protein-protein interactions were explored by using homobifunctional amino group-specific chemical cross-linkers with reactive residues being identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) of tryptic peptides. On the basis of studies of the UreABCD complex, UreD is capable of cross-linking with UreB Lys(9), UreB Lys(76), and UreC Lys(401). Furthermore UreD appears to be positioned over UreC Lys(515) according to decreased reactivity of this residue compared with its reactivity in UreD-free apoprotein. Several UreB-UreC and UreC-UreC cross-links also were observed within this complex; e.g. UreB Lys(76) with the UreC amino terminus, UreB Lys(9) with UreC Lys(20), and UreC Lys(515) with UreC Lys(89). These interactions are consistent with the proximate surface locations of these residues observed in the UreABC crystal structure. MALDI-TOF MS analyses of UreABCDF are consistent with a cross-link between the UreF amino terminus and UreB Lys(76). On the basis of an unexpected cross-link between UreB Lys(76) and UreC Lys(382) (distant from each other in the UreABC structure) along with increased side chain reactivities for UreC Lys(515) and Lys(522), UreF is proposed to induce a conformational change within urease that repositions UreB and potentially could increase the accessibility of nickel ions and CO(2) to residues that form the active site.  相似文献   

3.
In vivo urease metallocenter assembly in Klebsiella aerogenes requires the presence of several accessory proteins (UreD, UreF, and UreG) and is further facilitated by UreE. In this study, UreG was isolated and shown to be a monomer with an Mr of 21,814 +/- 20 based on gel filtration chromatography and mass spectrometric results. Although it contains a P-loop motif typically found in nucleotide-binding proteins, UreG did not bind or hydrolyze ATP or GTP, and it exhibited no affinity for ATP- and GTP-linked agarose resins. Site-directed mutagenesis of ureG allowed the substitution of Ala for Lys-20 or Thr-21 in the P-loop motif and resulted in the production of inactive urease in cells grown in the presence of nickel; hence, an intact P-loop may be essential for UreG to function in vivo. These mutant cells were unable to synthesize the UreD-UreF-UreG-urease apoprotein species that are thought to be the key urease activation complexes in the cell. An insoluble protein species containing UreD, UreF, and UreG (termed the DFG complex) was detected in cells carrying deletions in ureE and the urease structural genes. The DFG complex was solubilized in 0.5% Triton X-100 detergent, shown to bind to an ATP-linked agarose resin, and found to elute from the resin in the presence of Mg-ATP. In cells containing a UreG P-loop variant, the DFG complex was formed but did not bind to the nucleotide-linked resin. These results suggest that the UreG P-loop motif may be essential for nucleotide binding by the DFG complex and support the hypothesis that nucleotide hydrolysis is required for in vivo urease metallocenter assembly.  相似文献   

4.
5.
Witte CP  Rosso MG  Romeis T 《Plant physiology》2005,139(3):1155-1162
Urease is a nickel-containing urea hydrolase involved in nitrogen recycling from ureide, purine, and arginine catabolism in plants. The process of urease activation by incorporation of nickel into the active site is a prime example of chaperone-mediated metal transfer to an enzyme. Four urease accessory proteins are required for activation in Klebsiella aerogenes. In plants urease accessory proteins have so far been only partially defined. Using reverse genetic tools we identified four genes that are necessary for urease activity in Arabidopsis (Arabidopsis thaliana; ecotypes Columbia and N?ssen). Plants bearing T-DNA or Ds element insertions in either the structural gene for urease or in any of the three putative urease accessory genes AtureD, AtureF, and AtureG lacked the corresponding mRNAs and were defective in urease activity. In contrast to wild-type plants, the mutant lines were not able to support growth with urea as the sole nitrogen source. To investigate whether the identified accessory proteins would be sufficient to support eukaryotic urease activation, the corresponding cDNAs were introduced into urease-negative Escherichia coli. In these bacteria, urease activity was observed only when all three plant accessory genes were coexpressed together with the plant urease gene. Remarkably, plant urease activation occurred as well in cell-free E. coli extracts, but only in extracts from cells that had expressed all three accessory proteins. The future molecular dissection of the plant urease activation process may therefore be performed in vitro, providing a powerful tool to further our understanding of the biochemistry of chaperone-mediated metal transfer processes in plants.  相似文献   

6.
Soriano A  Colpas GJ  Hausinger RP 《Biochemistry》2000,39(40):12435-12440
The activation of metal-containing enzymes often requires the participation of accessory proteins whose roles are poorly understood. In the case of Klebsiella aerogenes urease, a nickel-containing enzyme, metallocenter assembly requires UreD, UreF, and UreG acting as a protein chaperone complex and UreE serving as a nickel metallochaperone. Urease apoprotein within the UreD-UreF-UreG-urease apoprotein complex is activated to wild-type enzyme activity levels under physiologically relevant conditions (100 microM bicarbonate and 20 microM Ni2+) in a process that requires GTP and UreE. The GTP concentration needed for optimal activation is greatly reduced in the presence of UreE compared to that required in its absence. The amount of UreE provided is critical, with maximal activation observed at a concentration equal to that of Ni2+. On the basis of its ability to facilitate urease activation in the presence of chelators, UreE is proposed to play an active role in transferring Ni2+ to urease apoprotein. Studies involving site-directed variants of UreE provide evidence that His96 has a direct role in metal transfer. The results presented here parallel those obtained from previous in vivo studies, demonstrating the relevance of this in vitro system to the cellular metallocenter assembly process.  相似文献   

7.
Helicobacter pylori UreF (HpUreF) is involved in the insertion of Ni2+ in the urease active site. The recombinant protein in solution is a dimer characterized by an extensive α-helical structure and a well-folded tertiary structure. HpUreF binds two Ni2+ ions per dimer, with a micromolar dissociation constant, as shown by calorimetry. X-ray absorption spectroscopy indicated that the Ni2+ ions reside in a five-coordinate pyramidal geometry comprising exclusively N/O-donor ligands derived from the protein, including one or two histidine imidazole and carboxylate ligands. Binding of Ni2+ does not affect the solution properties of the protein. Mutation to alanine of His229 and/or Cys231, a pair of residues located on the protein surface that interact with H. pylori UreD, altered the affinity of the protein for Ni2+. This result, complemented by the findings from X-ray absorption spectroscopy, indicates that the Ni2+ binding site involves His229, and that Cys231 has an indirect structural role in metal binding. An in vivo assay of urease activation demonstrated that H229A HpUreF, C231A HpUreF, and H229/C231 HpUreF are significantly less competent in this process, suggesting a role for a Ni2+ complex with UreF in urease maturation. This hypothesis was supported by calculations revealing the presence of a tunnel that joins the Cys-Pro-His metal binding site on UreG and an opening on the UreD surface, passing through UreF close to His229 and Cys231, in the structure of the H. pylori UreDFG complex. This tunnel could be used to transfer nickel into the urease active site during apoenzyme-to-holoenzyme activation.  相似文献   

8.
In vivo assembly of the Klebsiella aerogenes urease nickel metallocenter requires the presence of UreD, UreF, and UreG accessory proteins and is further facilitated by UreE. Prior studies had shown that urease apoprotein exists in an uncomplexed form as well as in a series of UreD-urease (I.-S. Park, M.B. Carr, and R.P. Hausinger, Proc. Natl. Acad. Sci. USA 91:3233-3237, 1994) and UreD-UreF-UreG-urease (I.-S. Park and R.P. Hausinger, J. Bacteriol. 177:1947-1951, 1995) apoprotein complexes. This study demonstrates the existence of a distinct series of complexes consisting of UreD, UreF, and urease apoprotein. These novel complexes exhibited activation properties that were distinct from urease and UreD-urease apoprotein complexes. Unlike the previously described species, the UreD-UreF-urease apoprotein complexes were resistant to inactivation by NiCl2. The bicarbonate concentration dependence for UreD-UreF-urease apoenzyme activation was significantly decreased compared with that of the urease and UreD-urease apoproteins. Western blot (immunoblot) analyses with polyclonal anti-urease and anti-UreD antibodies indicated that UreD is masked in the UreD-UreF-urease complexes, presumably by UreF. We propose that the binding of UreF modulates the UreD-urease apoprotein activation properties by excluding nickel ions from binding to the active site until after formation of the carbamylated lysine metallocenter ligand.  相似文献   

9.
D M Kurnit 《Gene》1989,82(2):313-315
I describe the construction of a variety of Escherichia coli recA deletion strains designed to facilitate molecular cloning. These recA deletion strains permit the efficient cloning of foreign inserts carried in plasmid, phage, cosmid, phasmid (phage-plasmid hybrid) or phosmid (phage-cosmid hybrid) vectors.  相似文献   

10.
Immunochemical studies have demonstrated that apoprotein B-100 and apoprotein B-48 share some antigenic determinants, but whether they are products of the same gene has remained uncertain. Utilizing a specific mouse monoclonal antibody, MB19, we recently characterized a common form of genetic polymorphism that was expressed in apo-B-100 (Young, S. G., Bertics, S. J., Curtiss, L. K., Casal, D. C., and Witztum, J.L. (1985) Proc. Natl. Acad. Sci. U.S.A., in press). Antibody MB19 binds different allotypes of apo-B-100 (MB19(1) and MB19(2] with high and low affinities, respectively. Compared to a rabbit antiserum against human low density lipoprotein, which detects 100% of apo-B mass in all individuals, antibody MB19 detects 100% of apo-B with allotype MB19(1) but less than 10% of apo-B with allotype MB19(2). Western blots demonstrate that MB19 binds to both apo-B-100 and apo-B-48. To determine if apo-B-48 and apo-B-100 from the same individual express the same polymorphism, chylomicrons and very low density lipoproteins were isolated from 23 subjects in whom the allotypes of apo-B-100 were known. Delipidated apoproteins were separated electrophoretically and then transferred to nitrocellulose membranes. Nitrocellulose membranes were incubated with 125I-MB19 (to detect the polymorphism) and 131I-antiserum to human apo-B (to quantitate total apo-B transferred to nitrocellulose membranes). Apo-B-100 and apo-B-48 bands were removed and the ratio of 125/131 counts in each band was calculated. In all 23 subjects studied, the same MB19 polymorphism was present in both apo-B-100 and apo-B-48. This observation provides strong evidence that both apoproteins are products of the same gene.  相似文献   

11.
The mechanism of activation of soluble guanylate cyclase purified from bovine lung by phenylhydrazine is reported. Heme-deficient and heme-containing forms of guanylate cyclase were studied. Heme-deficient enzyme was activated 10-fold by NO but was not activated by phenylhydrazine. Catalase or methemoglobin enabled phenylhydrazine to activate guanylate cyclase 10-fold and enhanced activation by NO to over 100-fold. Heme-containing enzyme was activated only 3-fold by phenylhydrazine but over 100-fold by NO. Added hemoproteins enhanced enzyme activation by phenylhydrazine to 12-fold without enhancing activation by NO. Reducing or anaerobic conditions inhibited, whereas oxidants enhanced enzyme activation by phenylhydrazine plus catalase, and KCN had no effect. In contrast, enzyme activation by NO and NaN3 was inhibited by oxidants or KCN. NaN3 required native catalase, whereas phenylhydrazine also utilized heat-denatured catalase for enzyme activation. Thus, the mechanism of guanylate cyclase activation by phenylhydrazine differed from that by NO or NaN3. Guanylate cyclase activation by phenylhydrazine resulted from an O2-dependent reaction between phenylhydrazine and hemoproteins to generate stable iron-phenyl hemoprotein complexes. These complexes activated guanylate cyclase in the absence of O2, but lost activity after acidification, basification, or heating. Gel filtration of prereacted mixtures of [U-14C]phenylhydrazine plus hemoproteins resulted in co-chromatography of radioactivity, protein, and guanylate cyclase stimulating activity, and yielded a phenyl-hemoprotein binding stoichiometry of four under specified conditions (one phenyl/heme). [14C]Phenyl bound to heme-containing but not heme-deficient guanylate cyclase and binding correlated with enzyme activation. Moreover, reactions between enzyme and iron-[14C] phenyl hemoprotein complexes resulted in the exchange or transfer of iron-phenyl heme to guanylate cyclase and this correlated with enzyme activation.  相似文献   

12.
Bacillus pasteurii UreG, a chaperone involved in the urease active site assembly, was overexpressed in Escherichia coli BL21(DE3) and purified to homogeneity. The identity of the recombinant protein was confirmed by SDS-PAGE, protein sequencing, and mass spectrometry. A combination of size exclusion chromatography and multiangle and dynamic laser light scattering established that BpUreG is present in solution as a dimer. Analysis of circular dichroism spectra indicated that the protein contains large portions of helices (15%) and strands (29%), whereas NMR spectroscopy indicated the presence of conformational fluxionality of the protein backbone in solution. BpUreG catalyzes the hydrolysis of GTP with a kcat=0.04 min(-1), confirming a role for this class of proteins in coupling energy requirements and nickel incorporation into the urease active site. BpUreG binds two Zn2+ ions per dimer, with a KD=42 +/- 3 microm, and has a 10-fold lower affinity for Ni2+. A structural model for BpUreG was calculated by using threading algorithms. The protein, in the fully folded state, features the typical structural architecture of GTPases, with an open beta-barrel surrounded by alpha-helices and a P-loop at the N terminus. The protein dynamic behavior observed in solution is critically discussed relative to the structural model, using algorithms for disorder predictions. The results suggest that UreG proteins belong to the class of intrinsically unstructured proteins that need the interaction with cofactors or other protein partners to perform their function. It is also proposed that metal ions such as Zn2+ could have important structural roles in the urease activation process.  相似文献   

13.
The biosynthesis of the active metal-bound form of the nickel-dependent enzyme urease involves the formation of a lysine-carbamate functional group concomitantly with the delivery of two Ni(2+) ions into the precast active site of the apoenzyme and with GTP hydrolysis. In the urease system, this role is performed by UreG, an accessory protein belonging to the group of homologous P-loop GTPases, often required to complete the biosynthesis of nickel-enzymes. This study is focused on UreG from Helicobacter pylori (HpUreG), a bacterium responsible for gastric ulcers and cancer, infecting large part of the human population, and for which urease is a fundamental virulence factor. The soluble HpUreG was expressed in E. coli and purified to homogeneity. On-line size exclusion chromatography and light scattering indicated that apo-HpUreG exists as a monomer in solution. Circular dichroism, which demonstrated the presence of a well-defined secondary structure, and NMR spectroscopy, which revealed a large number of residues that appear structured on the basis of their backbone amide proton chemical shift dispersion, indicated that, at variance with other UreG proteins so far characterized, this protein is significantly folded in solution. The amino acid sequence of HpUreG is 29% identical to that of HypB from Methanocaldococcus jannaschii, a dimeric zinc-binding GTPase involved in the in vivo assembly of [Ni,Fe]-hydrogenase. A homology-based molecular model of HpUreG was calculated, which allowed us to identify structural and functional features of the protein. Isothermal titration microcalorimetry demonstrated that HpUreG specifically binds 0.5 equivalents of Zn(2+) per monomer (K(d) = 0.33 +/- 0.03 microM), whereas it has 20-fold lower affinity for Ni(2+) (K(d) = 10 +/- 1 microM). Zinc ion binding (but not Ni(2+) binding) causes protein dimerization, as confirmed using light scattering measurements. The structural rearrangement occurring upon Zn(2+)-binding and consequent dimerization was evaluated using circular dichroism and fluorescence spectroscopy. Fully conserved histidine and cysteine residues were identified and their role in zinc binding was verified by site-directed mutagenesis and microcalorimetry. The results are analyzed and discussed with respect to analogous examples of GTPases in nickel metabolism.  相似文献   

14.
15.
In the present study, we investigated in vivo the infection and APC functions of dendritic cells (DC) and macrophages (Mphi) after administration of live mycobacteria to mice. Experiments were conducted with Mycobacterium bovis bacillus Calmette-Guerin (BCG) or a rBCG expressing a reporter Ag. Following infection of mice, DC and Mphi were purified and the presence of immunogenic peptide/MHC class II complexes was detected ex vivo on sorted cells, as was the secretion of IL-12 p40. We show in this study that DC is a host cell for mycobacteria, and we provide an in vivo detailed picture of the role of Mphi and DC in the mobilization of immunity during the early stages of a bacterial infection. Strikingly, BCG bacilli survive but remain stable in number in the DC leukocyte subset during the first 2 wk of infection. As Ag presentation by DC is rapidly lost, this suggests that DC may represent a hidden reservoir for mycobacteria.  相似文献   

16.
T4 heteroduplex heterozygotes are lost selectively after prolonged incubation of phage-infected Escherichia coli cells under nonreplicating conditions. The loss of heterozygosity occurs for four out of six rII sites tested and is not dependent upon T4 v gene function. The results are interpreted to indicate the existence of a base-specific system for the recognition of mismatched bases in intracellular DNA.  相似文献   

17.
Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways   总被引:9,自引:0,他引:9  
A growing body of evidence indicates that phenylpropanoid and flavonoid metabolism is catalyzed, not by free-floating 'soluble' enzymes, but via one or more membrane-associated multienzyme complexes. This type of macromolecular organization has important implications for the overall efficiency, specificity, and regulation of these pathways. Classical biochemical studies of phenylpropanoid and flavonoid metabolism have laid a solid foundation for this model, providing evidence of the channeling of intermediates between enzyme active sites and co-localization of enzymes in cell membranes. This work is now being extended using transgenic plants to determine how the partitioning of metabolites within these pathways is controlled, as well as applying sensitive methods to define specific interactions among the individual enzymes. Information from these studies promises to provide new insights into the structuring of biosynthetic pathways within cells, which should lead to more effective means for engineering the production of plant metabolites with nutritional and agronomic importance.  相似文献   

18.
Oxygen activation occurs at a wide variety of enzyme active sites. Mechanisms previously proposed for the copper monooxygenase, dopamine beta-monooxygenase (DbetaM), involve the accumulation of an activated oxygen intermediate with the properties of a copper-peroxo or copper-oxo species before substrate activation. These are reminiscent of the mechanism of cytochrome P-450, where a heme iron stabilizes the activated O2 species. Herein, we report two experimental probes of the activated oxygen species in DbetaM. First, we have synthesized the substrate analog, beta,beta-difluorophenethylamine, and examined its capacity to induce reoxidation of the prereduced copper sites of DbetaM upon mixing with O2 under rapid freeze-quench conditions. This experiment fails to give rise to an EPR-detectable copper species, in contrast to a substrate with a C-H active bond. This indicates either that the reoxidation of the enzyme-bound copper sites in the presence of O2 is tightly linked to C-H activation or that a diamagnetic species Cu(II)-O2* has been formed. In the context of the open and fully solvent-accessible active site for the homologous peptidylglycine-alpha-hydroxylating monooxygenase and by analogy to cytochrome P-450, the accumulation of a reduced and activated oxygen species in DbetaM before C-H cleavage would be expected to give some uncoupling of oxygen and substrate consumption. We have, therefore, examined the degree to which O2 and substrate consumption are coupled in DbetaM using both end point and initial rate experimental protocols. With substrates that differ by more than three orders of magnitude in rate, we fail to detect any uncoupling of O2 uptake from product formation. We conclude that there is no accumulation of an activated form of O2 before C-H abstraction in the DbetaM and peptidylglycine-alpha-hydroxylating monooxygenase class of copper monooxygenases, presenting a mechanism in which a diamagnetic Cu(II)-superoxo complex, formed initially at very low levels, abstracts a hydrogen atom from substrate to generate Cu(II)-hydroperoxo and substrate-free radical as intermediates. Subsequent participation of the second copper site per subunit completes the reaction cycle, generating hydroxylated product and water.  相似文献   

19.
During the processing of particulate Ags, it is unclear whether peptide:class II MHC (MHC-II) complexes are formed within phagosomes or within endocytic compartments that receive Ag fragments from phagosomes. Murine macrophages were pulsed with latex beads conjugated with OVA. Flow or Western blot analysis of isolated phagosomes showed extensive acquisition of MHC-II, H-2M, and invariant chain within 30 min, with concurrent degradation of OVA. T hybridoma responses to isolated subcellular fractions demonstrated OVA (323-339):I-Ad complexes in phagosomes and plasma membrane but not within dense late endocytic compartments. Furthermore, when two physically separable sets of phagosomes were present within the same cells, OVA(323-339):I-Ad complexes were demonstrated in latex-OVA phagosomes but not in phagosomes containing latex beads conjugated with another protein. This implies that these complexes were formed specifically within phagosomes and were not formed elsewhere and subsequently transported to phagosomes. In addition, peptide:MHC-II complexes were shown to traffic from phagosomes to the cell surface. In conclusion, phagosomes are fully competent to process Ags and generate peptide:MHC-II complexes that are transported to the cell surface and presented to T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号