首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The morphology of calretinin- and tyrosine hydroxylase-immunoreactive (IR) neurons in adult pig retina was studied. These neurons were identified using antibody immunocytochemistry. Calretinin immunoreactivity was found in numerous cell bodies in the ganglion cell layer. Large ganglion cells, however, were not labeled. In the inner nuclear layer, the regular distribution of calretinin-IR neurons, the inner marginal location of their cell bodies in the inner nuclear layer, and the distinctive bilaminar morphologies of their dendritic arbors in the inner plexiform layer suggested that these calretinin-IR cells were AII amacrine cells. Calretinin immunoreactivity was observed in both A-and B-type horizontal cells. Neurons in the photoreceptor cell layer were not labeled by this antibody. The great majority of tyrosine hydroxylase-IR neurons were located at the innermost border of the inner nuclear layer (conventional amacrines). The processes were monostratified and ran laterally within layer 1 of the inner plexiform layer. Some of the tyrosine hydroxylase-IR neurons were located in the ganglion cell layer (displaced amacrines). The processes of displaced tyrosine hydroxylase-IR amacrine cells were also located within layer 1 of the inner plexiform layer. Some processes of a few neurons were located in the outer plexiform layer. A very low density of neurons had additional bands of tyrosine hydroxylase-IR processes in the middle and deep layers of the inner plexiform layer. The processes of tyrosine hydroxylase-IR neurons extended radially over a wide area and formed large, moderately branched dendritic fields. These processes occasionally had varicosities and formed "dendritic rings". These results indicate that calretinin- and tyrosine hydroxylase-IR neurons represent specific neuronal cell types in the pig retina.  相似文献   

2.
A distinct population of wide-field, unistratified amacrine cells are shown to be selectively stained by using neurofibrillar methods in rabbit and cat retinae. Their cell bodies may be located in the inner nuclear, inner plexiform or ganglion cell layers and they branch predominantly in stratum 2 of the inner plexiform layer. Characteristically, each cell has two or more long-range distal processes which extend for 2-3 mm beyond a more symmetrical, proximal dendritic field of 0.6-0.8 mm diameter. Although the neurofibrillar long-range amacrines account for less than 1 amacrine in 500, they achieve effective coverage of the retina by both the proximal and distal dendrites.  相似文献   

3.
When cat retina is incubated in vitro with the fluorescent dye, 4',6-diamidino-2-phenyl-indole (DAPI), a uniform population of neurons is brightly labelled at the inner border of the inner nuclear layer. The dendritic morphology of the DAPI-labelled cells was defined by iontophoretic injection of Lucifer yellow under direct microscopic control: all the filled cells had the narrow-field bistratified morphology that is distinctive of the AII amacrine cells previously described from Golgi-stained retinae. Although the AII amacrines are principal interneurons in the rod-signal pathway, their density distribution does not follow the topography of the rod receptors, but peaks in the central area like the cone receptors and the ganglion cells. There are some 512 000 AII amacrines in the cat retina and their density ranges from 500 cells per square millimetre at the superior margin to 5300 cells per square millimetre in the centre (retinal area is 450 mm2). The isodensity contours are kite-shaped, particularly at intermediate densities, with a horizontal elongation towards nasal retina. The cell body size and the dendritic dimensions of AII amacrines increase with decreasing cell density. The lobular dendrites in sublamina a of the inner plexiform layer span a restricted field of 16-45 microns diameter, while the arboreal dendrites in sublamina b form a varicose tree of 18-95 microns diameter. The dendritic field coverage of the lobular appendages is close to 1.0 (+/- 0.2) at all eccentricities whereas the coverage of the arboreal dendrites doubles within the first 1.5 mm and then remains constant at 3.8 (+/- 0.7) throughout the periphery.  相似文献   

4.
Acetylcholine-synthesizing cells in the rabbit retina are symmetrically distributed about the inner plexiform layer: one population of cholinergic amacrines has cell bodies in the inner nuclear layer and an equivalent population of displaced amacrines has cell bodies in the ganglion cell layer. It has been suggested that the morphological correlates of the acetylcholine-synthesizing cells are either coronate amacrine cells or starburst amacrine cells. Coronate cells have a characteristic nuclear morphology and can be selectively labelled by neurofibrillar methods or with the fluorescent dye4',6-diamidino-2-phenyl-indole (DAPI). Starburst cells have a characteristic dendritic morphology but have only been described from Golgi-stained retinae. This paper bridges the gap between the previous studies. DAPI-labelled coronate cells were impaled with a micropipette under microscopic control and filled with Lucifer yellow by iontophoresis. The results show that the coronate amacrines in the ganglion cell layer are type b starburst cells, and that those DAPI-labelled neurones in the inner nuclear layer with a coronate-like nuclear morphology are type a starburst cells. At a given eccentricity the dendritic field diameter of type a starburst cells is about 1.13 times larger than that of type b starburst cells. The dendritic field coverage of coronate (type b starburst) cells increases linearly with decreasing coronate cell density and ranges from 25 on the peak visual streak to 70+ in the superior periphery.  相似文献   

5.
Summary Neurons displaying Neuropeptide Y (NPY) immunoreactivity were found among amacrine cells in the retina of baboon, pig, cat, pigeon, chicken, frog, trout, carp and goldfish. The immunoreactive cell bodies were located in the middle and the innermost cell rows of the inner nuclear layer with processes forming one, two or three more or less well-defined sublayers in the inner plexiform layer. The location and the density of the sublayers varied with the species investigated. In the frog retina, bipolar-like cell bodies were found in the middle of the inner nuclear layer as well as sparsely occurring ovoid cell bodies in the ganglion cell layer. Like the amacrine cells, these cells emitted processes ramifying in three sublayers in the inner plexiform layer.  相似文献   

6.
Neurons displaying Neuropeptide Y (NPY) immunoreactivity were found among amacrine cells in the retina of baboon, pig, cat, pigeon, chicken, frog, trout, carp and goldfish. The immunoreactive cell bodies were located in the middle and the innermost cell rows of the inner nuclear layer with processes forming one, two or three more or less well-defined sublayers in the inner plexiform layer. The location and the density of the sublayers varied with the species investigated. In the frog retina, bipolar-like cell bodies were found in the middle of the inner nuclear layer as well as sparsely occurring ovoid cell bodies in the ganglion cell layer. Like the amacrine cells, these cells emitted processes ramifying in three sublayers in the inner plexiform layer.  相似文献   

7.
Using immunocytochemistry, we have investigated the localization of CD15 in the rat retina. In the present study, two types of amacrine cell in the inner nuclear layer (INL) and some cells in the ganglion cell layer were labeled with anti-CD15 antisera. Type 1 amacrine cells have large somata located in the INL, with long and branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). Type 2 cells have a smaller soma and processes branching in stratum 1 of the IPL. A third population showing CD15 immunoreactivity was a class of displaced amacrine cells in the ganglion cell layer. The densities of type 1 and type 2 amacrine cells were 166/mm(2) and 190/mm(2) in the central retina, respectively. The density of displaced amacrine cells was 195/mm(2). Colocalization experiments demonstrated that these CD15-immunoreactive cells exhibit gamma-aminobutyric acid and neuronal nitric oxide synthase (nNOS) immunoreactivities. Thus, the same cells of the rat retina are labeled by anti-CD15 and anti-nNOS antisera and these cells constitute a subpopulation of GABAergic amacrine cells.  相似文献   

8.
Substance P (SP) immunoreactivity in the guinea pig retina was studied by light and electron microscopy. The morphology and distribution of SP-immunoreactive neurons was defined by light microscopy. The SP-immunoreactive neurons formed one population of amacrine cells whose cell bodies were located in the proximal row of the inner nuclear layer. A single dendrite emerged from each soma and descended through the inner plexiform layer toward the ganglion cell layer. SP-immunoreactive processes ramified mainly in strata 4 and 5 of the inner plexiform layer. SP-immunoreactive amacrine cells were present at a higher density in the central region around the optic nerve head and at a lower density in the peripheral region of the retina. The synaptic connectivity of SP-immunoreactive amacrine cells was identified by electron microscopy. SP-labeled amacrine cell processes received synaptic inputs from other amacrine cell processes in all strata of the inner plexiform layer and from bipolar cell axon terminals in sublamina b of the same layer. The most frequent postsynaptic targets of SP-immunoreactive amacrine cells were the somata of ganglion cells and their dendrites in sublamina b of the inner plexiform layer. Amacrine cell processes were also postsynaptic to SP-immunoreactive neurons in this sublamina. No synaptic outputs onto the bipolar cells were observed.  相似文献   

9.
The daggertooth Anotopterus pharao (Aulopiformes: Anotopteridae) is a large, piscivorous predator that lives within the epipelagic zone at night. In this species, the distribution of retinal ganglion cells has been examined. An isodensity contour map of ganglion cells shows that the cells concentrate in a slightly ventral region of the temporal retina. The region of high ganglion cell density contains 4.07 x 10(3) cells mm(-2), and the resulting visual acuity is 3.5 cycles deg(-1). Outside the area centralis, conspicuously large ganglion cells (LGCs) are observed in the temporal margin of the retina. The LGCs are regularly arrayed, and displaced into the inner plexiform layer. Thick dendrites extend into the outer part (sublamina a) of the inner plexiform layer. In the retinal whole mount, the total number of LGCs is 1590 (90.7 cm specimen), and the mean size of the LGCs is about four times larger than that of the ordinary ganglion cells. The morphological appearance of the LGCs was similar to the off-type alpha cells of the cat retina. The function of these distinctive LGCs is discussed in relation to specific head-up feeding behaviour.  相似文献   

10.
In adult domestic chickens, the neurones in the retinal ganglion cell layer are very unevenly disposed such that there is a sixfold increase in neurone density from the retinal edge to the retinal centre. The formation of the high ganglion-cell-density area centralis was studied on chick retinal wholemounts from the 8th day of incubation (E8) to 4 weeks after hatching (4WAH). The density of viable neurones and the number and the distribution of pyknotic neurones in the ganglion cell layer were estimated across the whole retina. Between E8 and E10, the distribution of neurones in the ganglion cell layer was anisodensitic with 53,000 mm-2 in the centre compared to 34,000 mm-2 in the periphery of the retina. Thereafter, a progressively steeper gradient of neurone density developed, which decreased from 24,000 mm-2 in the retinal centre to 6000 mm-2 at the retinal periphery by 4WAH. Neuronal pyknosis in the ganglion cell layer was observed between E9 and E17. From E11 onwards, consistently more pyknotic neurones were found in the peripheral than in the central retina. It was estimated that over the period of cell death approximately twice as many neurones died per unit area in the retinal periphery than in the centre. Retinal area measurements and estimation of neurone densities in the ganglion cell layer after the period of neurone generation and neurone death indicated differential retinal expansion, with more expansion in the peripheral than in the central retina. These observations allow us to conclude that the formation of the area centralis of the chick retina involves (1) slightly higher cell generation in the retinal centre, (2) higher rate of cell loss in the retinal periphery and (3) differential retinal expansion.  相似文献   

11.
Immunocytochemical techniques were employed to locate somatostatin (SS)-containing cells in the retina of the 13-lined ground squirrel (Spermophilus tridecemlineatus). In normal retinas immunostain was limited to neuronal processes, yet distinctly labeled somata were detected in retinas of animals pretreated with colchicine. Labeled cell bodies were located in the outermost and innermost portions of the inner nuclear layer (INL) and in the ganglion cell layer (GCL). The largest population of SS-like immunoreactive neurons was found in the innermost INL. These cells were identified as small and medium sized amacrine cells whose soma diameters ranged from 4 to 14μm. A smaller population of immunoreactive cells was observed in the outermost region of the INL. These cells, presumptive horizontal cells, were found mainly in peripheral regions of the retina. Immunoreactive cells in the GCL were of two types: displaced amacrines, and retinal ganglion cells. SS-positive axons in the optic fiber layer suggest that some of the immunoreactive GCL neurons were ganglion cells, and it is our opinion that these cells belong to a class of associational ganglion cells previously identified in other species.  相似文献   

12.
13.
Choline acetyltransferase and acetylcholinesterase activities were measured in samples taken at 7-micron increments through the inner plexiform layer of rat retina. These enzyme activities were not uniformly distributed through the depth of the inner plexiform layer. Peaks of choline acetyltransferase activity occurred at about one-third and peaks of acetylcholinesterase activity at about one-fifth of the depth into the inner plexiform layer from either side. The positions of the two peaks of choline acetyltransferase activity most likely correspond to the locations of processes from cholinergic amacrine somata in the inner nuclear layer, which spread in sublamina a, and processes from cholinergic amacrine somata "displaced" in the ganglion cell layer which spread in sublamina b of the inner plexiform layer. The peaks of acetylcholinesterase activity may in addition correspond to the processes of cholinoceptive amacrine and ganglion cells. The magnitudes of choline acetyltransferase and acetylcholinesterase activities are as high as found anywhere in rat brain, emphasizing the important role of cholinergic mechanisms in visual processing through the rat inner plexiform layer.  相似文献   

14.
Retinal ganglion cell genesis requires lakritz, a Zebrafish atonal Homolog.   总被引:8,自引:0,他引:8  
  相似文献   

15.
Two types of bipolar cell in the Geoclemys reevesii retina were studied quantitatively by means of specific cell labelling with an indoleamine derivative (5,6-dihydroxytryptamine, 5,6-DHT), a nucleic acid stain (4,6-diamidino-2-phenylindole, DAPI) and Lucifer yellow CH. Indoleamine-accumulating (IA) bipolar cells were selectively labelled with 5,6-DHT applied intraocularly. After the cells accumulated 5,6-DHT, the indoleamine fluorescence was photoconverted to diaminobenzidine products to allow observation of morphological details. Close examination of many cells (cell number; n = 120) showed that the IA bipolar cells consist of a single morphological type whose axon collaterals ramify sublaminae 1, 4 and 5 respectively. This terminal branching pattern corresponds to cells that hyperpolarize when their receptive field centres are illuminated (Weiler 1981). The density of IA bipolar cells was highest in the visual streak (4130 cells mm-2) and lowest at the peripheral margin (1970 cells mm-2). By applying a small amount of DAPI to the eye, nuclei located in the most proximal row of the outer nuclear layer were labelled selectively. By using selective intracellular dye injection into DAPI-labelled cells under fluorescence microscope (Tauchi & Masland 1984, 1985), these cells were found to have Landolt's clubs and single descending axons. Dye injections into more than fifty DAPI-labelled somata showed that they belonged exclusively to displaced bipolar cells. These comprised at least two subtypes that differ in the ramification pattern of their axon terminals within the inner plexiform layer: one was monostratified, whereas the other was bistratified. The displaced bipolar cell density was as high as 9400 cells mm-2 in the central retina, falling to 2000 cells mm-2 in the superior margin. In vitro Lucifer labelling revealed that the overall bipolar cell density in the central retina was as high as 39,300 cells mm-2. Both the conventionally located and displaced bipolar cells were included in this population. About 11% of the total bipolar cell population consisted of IA bipolar cells. Assuming that one half of the conventionally located bipolar cells are the centre-hyperpolarizing type, IA bipolar cells represent approximately 28% of the total. As displaced bipolar cells represent almost one quarter of the total bipolar population, the dislocation of their somata stands out morphologically, inviting investigation of possible functional correlates.  相似文献   

16.
Carbon monoxide (CO), an activator of soluble guanylate cyclase (SGC) and generated enzymatically by heme oxygenases (HO), is considered to function as an intra- and intercellular neuromodulator or neurotransmitter in the central and peripheral nervous systems. HO-2 is the constitutive isoform of HO and is more prevalent in nervous tissues than in the other peripheral tissues. Because previous studies have demonstrated different distributions of HO-2 in the retina depending on the species of animals, the aim of this study was to identify which cell types of the monkey retina express HO-2. The expression of HO-2 protein was examined in monkey retina by Western blot analysis. Immunoblottings from monkey homogenates revealed a single clear protein band with a molecular mass of 36 kDa that is corresponding to rat HO-2. Immunoreactivity of HO-2 was found in the perikarya of ganglion cells. Density of immunoreactive ganglion cells was higher in the central area of retina than in the peripheral retina, and somata of larger ganglion cells were stained more densely than smaller ones. In electron microscopy, immunoreactivity of HO-2 was localized on the membrane of the endoplasmic reticulum and the nuclear outer membrane of the ganglion cells. By contrast, inner plexiform layer, inner nuclear layer and outer nuclear layer were devoid of HO-2 immunoreactivity. cGMP were strongly localized in all of ganglion cells. Some cells contributed to the relatively faint cGMP staining were seen in the inner nuclear layer. In combination of HO-2 and cGMP immunocytochemistry, the overlap of co-localization of HO-2 and cGMP would suggest that HO-2 in the ganglion cells would serve as a source for CO generation and CO could serve as a gaseous signaling molecule modulator of neural activity in the retina of monkey.  相似文献   

17.
The distribution of calbindin and calretinin in the retina of the sturgeon Acipenser baeri was studied with immunocytochemistry. Western blot analysis of brain extracts, together with immunocytochemical results in the retina and brain, indicated the presence of the two calcium-binding proteins in sturgeon. Calbindin immunocytochemistry revealed only a large displaced bipolar cell type with narrowly stratified axons, similar to some mixed rod and cones bipolar cells described in teleosts. The plexus formed by the axons of these cells in the inner plexiform sublayer was similar to that formed by calbindin-immunoreactive diffuse bipolar cells of some mammals. Calretinin immunocytochemistry also stained these displaced bipolar cells, most ganglion cells including displaced ganglion cells (Dogiel cells), and some amacrine cells of the inner nuclear layer. The distribution of calbindin and calretinin immunoreactivities in the retina of a primitive bony fish indicates that these proteins are highly specific to the cell type.  相似文献   

18.

Background

Seizure-related gene 6 (Sez-6) is expressed in neurons of the mouse brain, retina and spinal cord. In the cortex, Sez-6 plays a role in specifying dendritic branching patterns and excitatory synapse numbers during development.

Methodology/Principal Findings

The distribution pattern of Sez-6 in the retina was studied using a polyclonal antibody that detects the multiple isoforms of Sez-6. Prominent immunostaining was detected in GABAergic, but not in AII glycinergic, amacrine cell subpopulations of the rat and mouse retina. Amacrine cell somata displayed a distinct staining pattern with the Sez-6 antibody: a discrete, often roughly triangular-shaped bright spot positioned between the nucleus and the apical dendrite superimposed over weaker general cytoplasmic staining. Displaced amacrines in the ganglion cell layer were also positive for Sez-6 and weaker staining was occasionally observed in neurons with the morphology of alpha ganglion cells. Two distinct Sez-6 positive strata were present in the inner plexiform layer in addition to generalized punctate staining. Certain inner nuclear layer cells, including bipolar cells, stained more weakly and diffusely than amacrine cells, although some bipolar cells exhibited a perinuclear “bright spot” similar to amacrine cells. In order to assess the role of Sez-6 in the retina, we analyzed the morphology of the Sez-6 knockout mouse retina with immunohistochemical markers and compared ganglion cell dendritic arbor patterning in Sez-6 null retinae with controls. The functional importance of Sez-6 was assessed by dark-adapted paired-flash electroretinography (ERG).

Conclusions

In summary, we have reported the detailed expression pattern of a novel retinal marker with broad cell specificity, useful for retinal characterization in rodent experimental models. Retinal morphology, ganglion cell dendritic branching and ERG waveforms appeared normal in the Sez-6 knockout mouse suggesting that, in spite of widespread expression of Sez-6, retinal function in the absence of Sez-6 is not affected.  相似文献   

19.
本文用免疫细胞化学ABC法,研究15—38周龄人胎视网膜神经肽Y免疫反应(NeuropeptideYimmunorective,NPY-IR)神经元(以下称NPY-IR细胞)的发育。结果表明:①胎龄15周视网膜中央部已出现不同类型的NPY-IR细胞:位于黄斑及其周围外核层的为NPY-IR视锥细胞;位于内核层最内一列的为NPY-IR无长突细胞位于节细胞层的可能为NPY-IR移位无长突细胞或节细胞;内核层和节细胞层的NPY-IR细胞的突起均分布在内网层的第1亚层。②胎龄24周后,NPY-IR视锥细胞完全消失。③随着视网膜的发育,内核层和节细胞层的NPY-IR细胞数量增多,突起增粗增长,胞体分布由中央部扩展到周边部,其中内核层NPY-IR细胞的密度呈现从中央部向周边部逐渐降低的分布方式,节细胞层NPY-IR细胞则多数集中分布在视网膜的边缘和黄斑之间,形成较高密度的环状区。  相似文献   

20.
Immunocytochemical methods with an antiserum against neuronal nitric oxide synthase (NOS) were applied to identify the morphology and synaptic connectivity of NOS-like immunoreactive neurons in the guinea pig retina. In the present study, two types of amacrine cells were labeled with anti-NOS antisera. Type 1 cells had large somata located in the inner nuclear layer (INL) with long, sparsely branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). The somata of type 2 cells (smaller diameters) were located in the INL. Some displaced amacrine cells in the ganglion cell layer were labeled. The soma size of the displaced amacrine cells was similar to that of the type 2 amacrine cells. However, processes originating from type 2 amacrine cells and displaced amacrine cells stratified mainly in strata 1 and 5, respectively. Some cone bipolar cells were weakly NOS-immunoreactive. The synaptic connectivity of NOS-like immunoreactive amacrine cells was identified in the IPL by electron microscopy. NOS-labeled amacrine cell processes received synaptic input from other amacrine cell processes and bipolar cell axon terminals in all strata of the IPL. The most frequent postsynaptic targets of NOS-immunoreactive amacrine cells were other amacrine cell processes. Cone bipolar cells were postsynaptic to NOS-labeled amacrine cells in all strata of the IPL. Labeled amacrine cells synapsing onto ganglion cells were found only in sublamina b. A few synaptic contacts were observed between labeled cell processes. In the outer plexiform layer, dendrites of labeled bipolar cells made basal contact with cone pedicles or formed a synaptic triad opposed to a synaptic ribbon of cone pedicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号