首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
For better operational control of the completely mixed oxygen activated sludge process (CMOAS), a study concerning the kinetics, performance, and operational stability of the Ramanathan-Gaudy model was conducted. Short-term experiments were conducted at various dilution rates (1/9, 1/6, 1/3, 1/1.5, and 1/1.0 hr?1) by using two recycle solids concentration values (5000 and 10,000 mg/liter). The influent substrate was an actual industrial organic wastewater (soft drink waste) and its concentration was maintained at 1000 mg/liter COD. The hydraulic recycle ratio, α, was maintained at 0.30. It was found that for CMOAS system with constant recycle cell concentration, a “steady state” with respect to reactor biological solids and effluent COD at different dilution rates could be attained. No appreciable dilute-out of reactor biological solids and substrate was observed up to the dilution rate of 1 hr?1 for both systems of different XR (5000 and 10,000 mg/liter). For the system of XR = 5000 mg/liter, except the dilution rate of hr?1, the effluent filtrate COD was lower than 100 mg/liter, the aerator biological solids concentration was about 1550 mg/liter, and the COD removal efficiency was higher than 90% for all dilution rates. For the system of XR = 10,000 mg/liter, the effluent filtrate COD was lower than 71 mg/liter, the aerator biological solids concentration was about 2750 mg/liter, and the COD removal efficiency was higher than 90% throughout all the dilution rates selection in the present study. The value of the Sludge Volume Index (SVI) was the range of 37.0 to 58.5 and provided good settleability of sludge. The sludge yield was 0.53 for the system of XR = 5000 mg/liter and 0.57 for the system of XR = 10,000 mg/liter. The carbohydrate and the protein content of the cells were 10.1–21.6% and 35.6–50.6%, respectively. For predicting the reactor biological solid and effluent COD of the CMOAS system by using the Ramanathan-Gaudy model, two sets of values for the biological kinetic constants should be considered since it provided the best fit of predicted values of the observed values. In the present study, μm = 0.4 hr?1, ks = 92 mg/liter for 1/3 ? D ? 1, and μm = 0.05 hr?1, ks = 11.1 mg/liter for 1/9 ? D < 1/3 were used to calculate the predicted values of reactor biological solid and effluent filtrate COD.  相似文献   

2.
The reliability of the process of Ramanathan and Gaudy (Biotechnol Bioeng., 13 , 125 (1971)) for the completely mixed activated-sludge process holding the recycle cell concentration, XR, as a system constant with respect to step changes in hydraulic retention time was investigated. The experiments were run at initial dilution rates of ?, ?, ¼, and ½ hr?1 treating a soft drink bottling wastewater. The influent substrate concentration was maintained at 1000 mg/liter chemical oxygen demand and the hydraulic recycle ratio at 0.3. The recycle sludge concentration was maintained at about 7000 mg/liter. It was found that the system could accommodate hydraulic shock loads up to 200% positive changes and down to 50%negative changes without disruption of the effluent quality. Shorter retention time of the range studied, from 2 to 8 hr, has the advantage of shorter response time with respect to the response of the concentration of biological solids in the reactor.  相似文献   

3.
Biological kinetic behaviors of the oxygenated and aerated activated sludge process were studied and compared in both once-through and constant sludge recycle systems. The models derived by Herbert, Elsworth, and Telling [J. Gen. Microbiol., 14 , 601 (1956)] and Ramanathan and Gaudy [Biotechnol. Bioeng., 11 , 207 (1969)] were used for the studies of once-through and constant sludge recycle systems, respectively. Soft drink waste water was used for the growth limiting substrate. Temperature was controlled within 30 ± 2°C. The influent substrate concentration was maintained at 1,000 mg/liter. The experiments were conducted at various dilution rates (from \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{1}{9} $\end{document} to 1/1.0 hr?1), and recycle solids concentration values (from 5,000 to 10,000 mg/liter), with hydraulic recycle ratio, α, at 0.3. Biological kinetic constants were evaluated and compared. It was found that these constants were different for the aerated and oxygenated systems within a certain range of dilution rates studied. The critical dilution rates for diluting out effluent chemical oxygen demand (COD) occurred at 0.1 and 0.2 hr?1in the once-through operation, and 0.2 and 0.4 hr?1in the sludge recycle operation for aerated and oxygenated systems, respectively. Observed sludge yield values and specific growth rate were varied with the type of aeration and with and without constant sludge recycle concentration applied. Sludge carbohydrates and proteins content in the oxygenation system (cell recycle) were 10.1–21.6% and 35.6–52.2%. Sludge volume index in the air and oxygenation systems varied from 41.4 to 354 and 31.9 to 58.5, respectively.  相似文献   

4.
The stability of the model of a completely mixed activated-sludge process holding the recycle sludge concentration, XR, as a system constant subjected to pH, temperature, potassium cyanide, and phenol shock loading was investigated. Soft-drink bottling wastewater was used and maintained at 1000 mg/liter chemical oxygen demand (COD). The hydraulic ratio and recycle sludge concentration were maintained at 0.3 and 7000 mg/liter, respectively. An initial dilution rate of ¼ hr?1 was maintained for pH and temperature shock loading, with ¼ and ? hr?1 for KCN shock loading and ¼, ?, and \documentclass{article}\pagestyle{empty}\begin{document}$\frac{1}{16}$\end{document} hr?1 for phenol shock loading. It was found that the present system could handle pH shock loading as low as 4.0 and as high as 10.4 without any serious disruption of biological solid concentration and filtrate COD. At pH 4.0 shock loading, filamentous organisms were predominant. Temperature shock loading could be handled from 23 to 36°C without any leakage of effluent filtrate COD. At 46°C temperature shock, a 14 hr period was required to recuperate to the new steady state and provided only 85% of COD removal efficiency. For KCN (50 mg/liger) and phenol (85 mg/liter) shock loading, the dilution rates should be lower than \documentclass{article}\pagestyle{empty}\begin{document}$\frac{1}{16}$\end{document} hr?1 in order to shorten the transient period and improve the effluent quality. Biological kinetic constants included cell yield value, maximum growth rate, and the saturation constant, which was varied with the qualitative shock applied.  相似文献   

5.
Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.  相似文献   

6.
Studies are carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater are found to be very high with low Biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and start up of the reactor is carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor is studied at different organic loading rates (OLR) and it is found that the optimum OLR is 10 kg COD/m3/day. The wastewater under investigation, which is having considerable quantity of SS, is treated anaerobically without any pretreatment. The COD and BOD of the reactor outlet wastewater are monitored and reduction at steady state and optimum OLR is observed to be 60-70% of COD and 80-90% of BOD. The reactor is subjected to organic shock loads at two different OLR and it is observed that the reactor could withstand shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.  相似文献   

7.
Heterogeneous populations of sewage origin were grown continuously at, dilution rates from 1/12 hr?1 to dilute-out (1/1 hr?1) using glucose (1000 mg/l) as carbon source and three concentrations of NH3-N as the nitrogen source (COD:N = 70:1, 40:1, and 25:1). The effects of nitrogen level and growth rate (dilution rate) on substrate removal, biological solids production, cellular carbohydrate and protein, and NH-N in the effluent were examined. It was found that the optimum level of nitrogen supplementation for the synthetic nitrogen-deficient waste employed should not be based solely on the desired effluent quality with respect to COD removal but should include due consideration of reactor detention time (or dilution rate) and the allowable (or desirable) level of nitrogen leakage in the effluent.  相似文献   

8.
The effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater was investigated. Experiments were conducted in a modified Ludzack–Ettinger pilot-plant configuration for 365 days. Total nitrification of an influent concentration of 1200 mg NH4+–N l−1 was obtained in this period. Influent COD/N ratios between 0.71 and 3.4 g COD g N−1 were tested by varying the nitrogen loading rate (NLR) supplied to the pilot plant. An exponential decrease of nitrification rate was observed when the influent COD/N ratio increased.

The experimental COD/N ratio for denitrification was 7.1±0.8 g COD g N−1 while the stoichiometric ratio was 4.2 g COD g N−1. This difference is attributable to the oxidation of organic matter in the anoxic reactor with the oxygen of the internal recycle. The influence of influent COD/N ratio on the treatment of high-strength ammonium industrial wastewater can be quantified with these results. The influence of COD/N ratio should be one of the main parameters in the design of biological nitrogen removal processes in industrial wastewater treatment.  相似文献   


9.
Hydrolysis of organophosphate insecticides by an immobilized-enzyme system.   总被引:2,自引:0,他引:2  
An enzyme preparation that could detoxify parathion and eight other organophosphate pesticides was covalently bound to either porous glass or porous silica beads. This immobilized-enzyme system was examined for its use in detoxification of pesticides in production wastewaters. The kinetics of parathion hydrolysis were examined at flow rates up to 96 liter/hr and at influent substrate concentrations ranging from 10--250 mg/liter. The enzyme reactor was able to hydrolyze 95% or more of the parathion added to industrial wastewaters generated during its production, thus reducing the effluent parathion concentration to below 500 ppb. Laboratory continuous-flow experiments were conducted for 70 days with industrial wastewater and indicated no loss in immobilized-enzyme activity. The influence of pH, temperature, solvents, and detergents on enzyme stability and activity and enzyme reactor kinetics will be discussed.  相似文献   

10.
Ceramic industry wastewaters not only contain high suspended and total solids but also significant amounts of dissolved organics resulting in high BOD or COD loads. Suspended solids can be removed from the wastewater by chemical precipitation. However, dissolved BOD/COD compounds can only be removed by biological or chemical oxidation. Effluent wastewater from chemical sedimentation stage of EGE CERAMIC industry was characterized and subjected to biological treatment in a laboratory scale activated sludge unit. Experiments were conducted at different hydraulic and solids retention times. The best results were obtained with Šc=20 h of hydraulic and Šc=20 days of solids retention times (sludge age) resulting in effluent COD concentration of 40 mg/l from a feed wastewater of 720 mg/l COD content. The suspended solids content of the activated sludge effluent was approximately 52 mg/l.  相似文献   

11.
A simple, efficient and cost-effective method for municipal wastewater treatment is examined in this paper. The municipal wastewater is treated using an upflow anaerobic sludge bed (UASB) reactor followed by flash aeration (FA) as the post-treatment, without implementing aerobic biological processes. The UASB reactor was operated without recycle, at hydraulic retention time (HRT) of 8 h and achieved consistent removal of BOD, COD and TSS of 60-70% for more than 12 months. The effect of FA on UASB effluent post-treatment was studied at different HRT (15, 30 and 60 min) and dissolved oxygen (DO) concentrations (low DO = 1-2 mg/L and high DO = 5-6 mg/L). The optimum conditions for BOD, COD and sulfide removal were 30-60 min HRT and high DO concentration inside the FA tank. The final effluent after clarification was characterized by BOD and COD values of 28-35 and 50-58 mg/L, respectively. Sulfides were removed by more than 80%, but the fecal coliform only by ~2 log. The UASB followed by FA is a simple and efficient process for municipal wastewater treatment, except for fecal coliform, enabling water and nutrients recycling to agriculture.  相似文献   

12.
Previous experimentation in our laboratory has shown that the classical theory developed for continuous growth of pure cultures in completely mixed aerobic systems in which the recycle cell concentration factor, c (where c = XR/X), is a selectable system constant, did not provide a suitable model for the heterogeneous (natural) populations of the activated sludge process. Another model was derived in which the recycle cell concentration, XR was employed as a system constant instead of c, and computational analysis was performed. Laboratory pilot plant experimentation was undertaken in order to determine whether a “steady state” in aerator biological solids concentration, X?, and substrate concentration, S?, could be approached under this mode of operation. Studies were performed at various organic feed concentrations holding dilution rate, D, at 0.125 hr?1, hydraulic recycle ratio, α, at 0.25, and XR at 10,000 mg/liter. Also, values of maximum specific growth rate, μmax, and saturation constant, Ks were determined. It was found that the model approached the steady state condition with heterogeneous populations more closely than did the classical model, and the high degree of treatment efficiency predicted by the model was demonstrated experimentally.  相似文献   

13.
以合成废水为基质,研究了采用硫酸盐还原-甲烷化两相厌氧新型工艺处理含高浓度硫酸盐有机废水的系统运行工艺条件.结果表明,酸化-硫酸盐还原反应器的适宜pH为6.5-7.0;500mg/l的S~(2-)使SRB的硫酸盐还原活性下降;208mg/l的[H_2S]_L抑制MPB活性的95.4%;推导出估算气提塔出水回流比R的模型;以得到的工艺条件为依据处理了含19200mg/1的SO_4~(2-)和29400mg/l COD的味精废水.  相似文献   

14.
《Process Biochemistry》2014,49(12):2241-2248
Membrane bioreactors (MBR) technology for wastewater offers many advantages over conventional technologies such as high effluent quality, less footprint and others. The main disadvantage of membrane bioreactors (MBR) is related to membrane fouling, which is mainly caused by extracellular polymeric substance (EPS) and soluble microbial products (SMP). This research studied EPS and SMP dynamics at different heights of a submerged anaerobic membrane bioreactor (SAMBR). The SAMBR was operated under two organic loading rates (OLR) (0.79 and 1.56 kg/m3 d) and was fed with synthetic wastewater with glucose as the carbon source. The results showed percentages of chemical oxygen demand (COD) removal above 95% and the highest COD removal rates were observed at the bottom of the reactor (>83%) for both OLR. The EPS showed a stratification with highest quantities in the supernatant. For the SMP the highest concentration was in the bottom of SAMBR where utilization predominated associated products whereas in the SAMBR supernatant predominated biomass associated products. The OLR change led to a significant increase in SMP accumulation but not in EPS. These facts showed that EPS and SMP dynamic in the SAMBR seemed to be mainly influenced by biological activity, total suspended solids concentration and substrate composition.  相似文献   

15.
This study tested the applicability of a submerged vacuum ultrafiltration membrane technology in combination with the biological treatment system to achieve dry-ditch criteria stipulated as follows: BOD5, TSS, NH3-N, and total phosphorous (TP) concentration not exceeding 10, 10, 1, and 0.5 mg/L respectively for the treatment of high strength food-processing wastewater. During the study, the biological system, operated at average hydraulic retention time of 5-6 days, achieved 95-96.5% BOD removal and 96-99% COD removal. The external membrane system ensured the achievability of the BOD and TSS criteria, with BOD and TSS concentrations in the permeate of 1-2 and 1-8 mg/L respectively. Nitrate, and nitrite concentrations increased during membrane filtration, while ammonia concentrations decreased. The most salient finding of this study is that, contrary to common belief, for industrial wastewaters, the filterability of the mixed liquor is influenced by the soluble organics, and may be low, thus necessitating operation of bioreactors at low mixed liquor solids. This study demonstrated that bioreactors operated at low SRTs and in combination with ultrafiltration can still achieve superior effluent quality that may meet reuse criteria at reasonable cost.  相似文献   

16.
An acetic-acid-based synthetic wastewater of different organic concentrations was successfully treated at 35 degrees C in anaerobic downflow fixed-film reactors operated at high organic loading rates and short hydraulic retention times (HRTs). Substrate removal and methane production rates close to theoretical values of complete volumetric chemical oxygen demand (COD) removal and maximum methane conversion were obtained. A high concentration of biofilm biomass was retained in the reactor. Steady-state biofilm concentration increased with increased organic loading rate and decreased HRTs, reaching a maximum of 8.3 kg VFS/m(3) at a loading rate of 17 kg COD/m(3) day. Biofilm substrate utilization rates of up to 1.6 kg COD/kg VFS day were achieved. Soluble COD utilization rates at various COD concentrations can be described by half-order reaction kinetics.  相似文献   

17.
Considering the diversity and the unexplored potential of regional aquatic flora, this study aimed to identify and analyze the potential of native aquatic macrophytes to reduce the organic matter of dairy wastewater (DW) using experimental constructed wetlands. The dairy wastewater (DW) had an average chemical oxygen demand (COD) of 7414.63 mg/L and then was diluted to 3133.16 mg/L (D1) and to 2506.53 mg/L (D2). Total solids, COD, temperature, and pH analyses were performed, and the biochemical oxygen demand (BOD) was estimated from the COD values. The best performance in the reduction of the organic matter was observed for Polygonum sp. (87.5% COD and 79.6% BOD) and Eichhornia paniculata (90% COD and 83.7% BOD) at dilution D1, on the 8th day of the experiment. However, the highest total solids removal was observed for Polygonum sp. (32.2%), on the 4th day, at dilution D2. The total solid (TS) concentration has also increased starting from the 8th day of the experiment was observed which may have been due to the development of mosquito larvae and their mechanical removal by sieving, thus changing the steady state of the experimental systems. The macrophytes Polygonum sp. and E. paniculata were considered suitable for the reduction of organic matter of DW using constructed wetlands.  相似文献   

18.
Performances of single-stage and two-stage sequencing batch reactor (SBR) systems were investigated for treating dairy wastewater. A single-stage SBR system was tested with 10,000 mg/l chemical oxygen demand (COD) influent at three hydraulic retention times (HRTs) of 1, 2, and 3 days and 20,000 mg/l COD influent at four HRTs of 1, 2, 3, and 4 days. A 1-day HRT was found sufficient for treating 10,000-mg/l COD wastewater, with the removal efficiency of 80.2% COD, 63.4% total solids, 66.2% volatile solids, 75% total Kjeldahl nitrogen, and 38.3% total nitrogen from the liquid effluent. Two-day HRT was believed sufficient for treating 20,000-mg/l COD dairy wastewater if complete ammonia oxidation is not desired. However, 4-day HRT needs to be used for achieving complete ammonia oxidation. A two-stage system consisting of an SBR and a complete-mix biofilm reactor was capable of achieving complete ammonia oxidation and comparable carbon, solids, and nitrogen removal while using at least 1/3 less HRT as compared to the single SBR system.  相似文献   

19.
A new hybrid reactor, the upflow blanket filter (UBF), which combined on open volume in the bottom two-thirds of the reactor for a sludge blanket and submerged plastic rings (Flexiring, Koch Inc., 235 m(2)/m(3)) in the upper one-third of the reactor volume, was studied. This UBF reactor was operated at 27 degrees C at loading rates varying from 5 to 51 g chemical oxygen demand (COD)/L d with soluble sugar wastewater (2500 mg COD/L). Maximum removal rates of 34 g COD/L d and CH(4) production rates of 7 vol/vol d [standard temperature and pressure (STP)] were obtained. The biomass activity was about 1.2 g COD/g volatile suspended solids per day. Conversion (based on effluent soluble COD) was over 93% with loading rates up to 26 g COD/L d. At higher loading rates conversion decreased rapidly. The packing was very efficient in retaining biomass.  相似文献   

20.
Small-scale sour starch agroindustry in Colombia suffer from absence of water treatment. Although starch processing plants produce diluted wastewater, it is a source of pollution and cause environmental problems to the nearby rural population. A laboratory scale anaerobic horizontal flow filter packed with bamboo pieces was evaluated for the treatment of cassava starch extraction wastewater. The wastewater used in the experimentation was the draining water of the starch sedimentation basin. The reactor was operated for 6 months. It was inoculated with a semi-granular sludge from an anaerobic UASB reactor of a slaughterhouse. Maximum organic loading rate (OLR) applied was 11.8g COD/L d without dilution of the wastewater. At steady state and maximum OLR applied, 87% of the COD was removed and a gas productivity of 3.7L/L d was achieved. The average biogas yield was 0.36L/g COD removed. Methane content in the biogas was in the range of 69-81%. The total suspended solids (TSS) removed were 67%. The relative high lactic acid content did not negatively influence the performance of the reactor. No perturbation due to cyanide (3-5mg/L) was observed during the reactor operation. The results obtained indicated that the anaerobic horizontal flow filter could be used efficiently for the treatment of wastewater from Colombian starch processing small-scale agroindustry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号