首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the influence of the Suppressor of Underreplication (SuUR) gene expression on the intercalary heterochromatin (IH) regions of Drosophila melanogaster polytene chromosomes. We observed a strong positive correlation between increased SuUR expression, underreplication extent, amount of DNA truncation, and formation of ectopic contacts in IH regions. SuUR overexpression from heat shock-driven transgene results in the formation of partial chromosomal aberrations whose breakpoints map exclusively to the regions of intercalary and pericentric heterochromatin. It is important to note that all these effects are seen only if SuUR overexpression is induced during early stages of chromosome polytenization. Therefore, we developed the idea that ectopic pairing results from the joining of free DNA ends, which are formed as a consequence of underreplication.  相似文献   

2.
3.
The morphological characteristics of intercalary heterochromatin (IH) are compared with those of other types of silenced chromatin in the Drosophila melanogaster genome: pericentric heterochromatin (PH) and regions subject to position effect variegation (PEV). We conclude that IH regions in polytene chromosomes are binding sites of silencing complexes such as PcG complexes and of SuUR protein. Binding of these proteins results in the appearance of condensed chromatin and late replication of DNA, which in turn may result in DNA underreplication. IH and PH as well as regions subject to PEV have in common the condensed chromatin appearance, the localization of specific proteins, late replication, underreplication in polytene chromosomes, and ectopic pairing.  相似文献   

4.
The Suppressor of Underreplication ( SuUR) gene contributes to the regulation of DNA replication in regions of intercalary heterochromatin in salivary gland polytene chromosomes. In the SuUR mutant these regions complete replication earlier than in wild type and, as a consequence, undergo full polytenization. Here we describe the effects of ectopic expression of SuUR using the GAL4-UAS system. We demonstrate that ectopically expressed SuUR exerts qualitatively distinct influences on polyploid and diploid tissues. Ectopic expression of SuUR inhibits DNA replication in polytene salivary gland nuclei, and reduces the degree of amplification of chorion protein genes that occurs in the follicle cell lineage. Effects caused by ectopic SuUR in diploid tissues vary considerably; there is no obvious effect on eye formation, but apoptosis is observed in the wing disc, and wing shape is distorted. The effect of ectopic SuUR expression is enhanced by mutations in the genes E2F and mus209 ( PCNA). Differential responses of polyploid and diploid cells to ectopic SuUR may reflect differences in the mechanisms underlying mitotic cell cycles and endocycles.Communicated by G. P. Georgiev  相似文献   

5.
Intercalary heterochromatin consists of extended chromosomal domains which are interspersed throughout the euchromatin and contain silent genetic material. These domains comprise either clusters of functionally unrelated genes or tandem gene duplications and possibly stretches of noncoding sequences. Strong repression of genetic activity means that intercalary heterochromatin displays properties that are normally attributable to classic pericentric heterochromatin: high compaction, late replication and underreplication in polytene chromosomes, and the presence of heterochromatin-specific proteins. Late replication and underreplication occurs when the suppressor of underreplication protein is present in intercalary heterochromatic regions. Intercalary heterochromatin underreplication in polytene chromosomes results in free double-stranded ends of DNA molecules; ligation of these free ends is the most likely mechanism for ectopic pairing between intercalary heterochromatic and pericentric heterochromatic regions. No support has been found for the view that the frequency of chromosome aberrations is elevated in intercalary heterochromatin.  相似文献   

6.
In Drosophila polytene chromosomes, regions of intercalary heterochromatin are scattered throughout the euchromatic arms. Here, we present data on the first fine analysis of the individual intercalary heterochromatin region, 75C1-2, located in the 3L chromosome. By using electron microscopy, we demonstrated that this region appears as three closely adjacent condensed bands. Mapping of the region on the physical map by means of the chromosomal rearrangements with known breakpoints showed that the length of the region is about 445 kb. Although it seems that the SUUR protein binds to the whole 75C1-2 region, the proximal part of the region is fully polytenized, so the DNA underreplication zone is asymmetric and located in the distal half of the region. Finally, we speculate that intercalary heterochromatin regions of Drosophila polytene chromosomes are organized into three different types with respect to the localization of the underreplication zone.  相似文献   

7.
8.
9.
We have investigated the distribution of three heterochromatic proteins [SUppressor of UnderReplication (SUUR), heterochromatin protein 1 (HP1), and SU(VAR)3–9] in chromosomes of nurse cells (NCs) and have compared the data obtained with the distribution of the same proteins in salivary gland (SG) chromosomes. In NC chromosomes, the SU(VAR)3–9 protein was found in pericentric heterochromatin and at 223 sites on euchromatic arms, while in SG chromosomes, it was mainly restricted to the chromocenter. In NC chromosomes, the HP1 and SUUR proteins bind to 331 and 256 sites, respectively, which are almost twice the number of sites in SG chromosomes. The distribution of the HP1 and SU(VAR)3–9 proteins depends on the SuUR gene. A mutation in this gene results in a dramatic decrease in the amount of SU(VAR)3–9 binding sites in autosomes. In the X chromosome, these sites are relocated in comparison to the SuUR +, and their total number only varies slightly. HP1 binding sites are redistributed in chromosomes of SuUR mutants, and their overall number did not change as considerably as SU(VAR)3–9. These data together point to an interaction of these three proteins in Drosophila NC chromosomes.Electronic Supplementary Material Supplementary material is available for this article at.  相似文献   

10.
11.
Breaks and ectopic contacts in the heterochromatic regions of Drosophila melanogaster polytene chromosomes are the manifestations of the cytological effects of DNA underreplication. Their appearance makes these regions difficult to map. The Su(UR)ES gene, which controls the phenomenon, has been described recently. Mutation of this locus gives rise to new blocks of material in the pericentric heterochromatic regions and causes the disappearance of breaks and ectopic contacts in the intercalary heterochromatic regions, thereby making the banding pattern distinct and providing better opportunities for mapping of the heterochromatic regions in polytene chromosomes. Here, we present the results of an electron microscope study of the heterochromatic regions. In the wild-type salivary glands, the pericentric regions correspond to the beta-heterochromatin and do not show the banding pattern. The most conspicuous cytological effect of the Su(UR)ES mutation is the formation of a large banded chromosome fragment comprising at least 25 bands at the site where the 3L and 3R proximal arms connect. In the other pericentric regions, 20CF, 40BF and 41BC, 15, 12 and 9 new bands were revealed, respectively. A large block of densely packed material appears in the most proximal part of the fourth chromosome. An electron microscope analysis of 26 polytene chromosome regions showing the characteristic features of intercalary heterochromatin was also performed. Suppression of DNA underreplication in the mutant transforms the bands with weak spots into large single bands.  相似文献   

12.
In the polytene nuclei of germ-line cells (ovarian pseudonurse cells) of Drosophila melanogaster females mutant for otu 11 (ovarian tumor), the pericentric heterochromatin is much more abundant than in somatic salivary gland cells. This is due to the degree of heterochromatin compaction (and consequently the level of underreplication) being lower in the nurse cells than in the salivary gland cells. The lower level of compaction probably results in a very low degree of position effect gene inactivation in the ovarian nurse cells.  相似文献   

13.
In polytene chromosomes of Drosophila melanogaster, regions of pericentric heterochromatin coalesce to form a compact chromocenter and are highly underreplicated. Focusing on study of X chromosome heterochromatin, we demonstrate that loss of either SU(VAR)3-9 histone methyltransferase activity or HP1 protein differentially affects the compaction of different pericentric regions. Using a set of inversions breaking X chromosome heterochromatin in the background of the Su(var)3-9 mutations, we show that distal heterochromatin (blocks h26-h29) is the only one within the chromocenter to form a big "puff"-like structure. The "puffed" heterochromatin has not only unique morphology but also very special protein composition as well: (i) it does not bind proteins specific for active chromatin and should therefore be referred to as a pseudopuff and (ii) it strongly associates with heterochromatin-specific proteins SU(VAR)3-7 and SUUR, despite the fact that HP1 and HP2 are depleted particularly from this polytene structure. The pseudopuff completes replication earlier than when it is compacted as heterochromatin, and underreplication of some DNA sequences within the pseudopuff is strongly suppressed. So, we show that pericentric heterochromatin is heterogeneous in its requirement for SU(VAR)3-9 with respect to the establishment of the condensed state, time of replication, and DNA polytenization.  相似文献   

14.
Salivary gland polytene chromosomes of Drosophila melanogaster have a reproducible set of intercalary heterochromatin (IH) sites, characterized by late DNA replication, underreplicated DNA, breaks and frequent ectopic contacts. The SuUR mutation has been shown to suppress underreplication, and wild-type SuUR protein is found at late-replicating IH sites and in pericentric heterochromatin. Here we show that the SuUR gene influences all four IH features. The SuUR mutation leads to earlier completion of DNA replication. Using transgenic strains with two, four or six additional SuUR(+) doses (4-8xSuUR(+)) we show that wild-type SuUR is an enhancer of DNA underreplication, causing many late-replicating sites to become underreplicated. We map the underreplication sites and show that their number increases from 58 in normal strains (2xSuUR(+)) to 161 in 4-8xSuUR(+) strains. In one of these new sites (1AB) DNA polytenization decreases from 100% in the wild type to 51%-85% in the 4xSuUR (+) strain. In the 4xSuUR(+) strain, 60% of the weak points coincide with the localization of Polycomb group (PcG) proteins. At the IH region 89E1-4 (the Bithorax complex), a typical underreplication site, the degree of underreplication increases with four doses of SuUR(+) but the extent of the underreplicated region is the same as in wild type and corresponds to the region containing PcG binding sites. We conclude that the polytene chromosome regions known as IH are binding sites for SuUR protein and in many cases PcG silencing proteins. We propose that these stable silenced regions are late replicated and, in the presence of SuUR protein, become underreplicated.  相似文献   

15.
In the polytene nuclei of germ-line cells (ovarian pseudonurse cells) of Drosophila melanogaster females mutant for otu 11 (ovarian tumor), the pericentric heterochromatin is much more abundant than in somatic salivary gland cells. This is due to the degree of heterochromatin compaction (and consequently the level of underreplication) being lower in the nurse cells than in the salivary gland cells. The lower level of compaction probably results in a very low degree of position effect gene inactivation in the ovarian nurse cells.  相似文献   

16.
Two AT-rich satellite DNAs are present in the genome of Glyptotendipes barbipes. The two satellites have densities of 1.680 g/cm3 (=21% GC) and of 1.673 g/cm3 (=13% GC) in neutral CsCl-density gradients. The main band DNA has a density of 1.691 g/cm3 (=32% GC). This value is in agreement with the 33% GC-content of G. barbipes DNA calculated from thermal denaturation (TM=83° C). — In brain DNA as well as in salivary gland DNA the two satellite sequences together comprise 12–15% of the total G. barbipes DNA. Comparisons of the density profiles of DNA extracted from polytene and non-polytene larval tissue gave no hints for underreplication of the satellite DNAs during polytenization. — The two satellite DNAs have been isolated from total DNA by Hoechst 33258-CsCl density centrifugation and then localized in the polytene salivary gland chromosomes by in situ hybridization. Both satellite sequences hybridize to all heterochromatic centromere bands of all four chromosomes of G. barbipes. Satellite I (1.673 g/cm3) hybridizes mainly with the middle of the heterochromatin, satellite II (1.680 g/cm3) hybridizes with two bands at the margin of the heterochromatin. In situ hybridization with polytene chromosomes of Chironomus thummi revealed the presence of G. barbipes satellite sequences also in the Ch. thummi genome at various locations, mainly the centromere regions.  相似文献   

17.
It has been previously shown that the SuUR gene encodes a protein located in intercalary and pericentromeric heterochromatin in Drosophila melanogaster polytene chromosomes. The SuUR mutation suppresses the formation of ectopic contacts and DNA underreplication in polytene chromosomes; SuUR+ in extra doses enhances the expression of these characters. This study demonstrates that heterochromatin-dependent PEV silencing is also influenced by SuUR. The SuUR protein localizes to chromosome regions compacted as a result of PEV; the SuUR mutation suppresses DNA underreplication arising in regions of polytene chromosomes undergoing PEV. The SuUR mutation also suppresses variegation of both adult morphological characters and chromatin compaction observed in rearranged chromosomes. In contrast, SuUR+ in extra doses and its overexpression enhance variegation. Thus, SuUR affects PEV silencing in a dose-dependent manner. However, its effect is expressed weaker than that of the strong modifier Su(var)2-5.  相似文献   

18.
Different genomic regions replicate at a different fixed time during the S phase. Late-replicating sequences are often underreplicated in the Drosophila salivary-gland polytene chromosomes. The SuUR gene, whose mutation changes the replication time of late-replicating regions in salivary-gland cells, has been identified in Drosophila melanogaster. The SUUR protein lacks homologs by a BLAST search, and only moderate similarity is observed between its N-terminal part and chromatin-remodeling proteins of the SWI2/SNF2 family. The gene and the protein were analyzed in insects. Orthologs of the SuUR gene were found in all annotated Drosophila species. The number of amino acid substitutions in the SUUR protein proved to be extremely high, corresponding to that of fast-evolving genes. Orthologs with low homology were found in mosquitoes Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. No orthologs of the SuUR gene were detected beyond Diptera.  相似文献   

19.
We examined three regions of under-represented euchromatic DNA sequences (histone, Ubx, and 11 A), for their possible correlation with euchromatic constrictions in polytene chromosomes of Drosophila melanogaster. Cloned sequences were hybridized to filters and to chromosomes prepared for light microscopy. Under-represented sequences hybridized to DNA within constrictions and in ectopic fibers. In contrast, adjacent sequences that were fully endoreplicated in the Ubx and 11A regions in polytene cells hybridized to sites just adjacent to their respective constrictions. For one region (Ubx), sequences under-represented in salivary gland cells were fully endoreplicated in fat body cells. For this particular region, the morphology of the polytene chromosomes differs between these two cell types in that the specific constriction is absent at this region in fat body polytene chromosomes, thus strengthening the correlation between under-representation and chromosome constrictions. Although all three sequences are in regions that have been classified by others as intercalary heterochromatin, we detect no common functional or sequence organizational feature for these examples of under-represented DNA. We suggest that the lower efficiencies of the replication origins, or special regions of termination at these sites, are the primary cause of the under-replication, and that this under-replication is sufficient to confer the properties of intercalary heterochromatin.  相似文献   

20.
Z. G. Scouras 《Genetica》1986,69(2):127-132
Certain regions of the salivary gland polytene chromosomes of Drosophila auraria and its closely related species D. triauraria and D. quadraria, exhibit definite toroidal structures, as evidenced in routinely fixed and stained squash preparations under the light microscope. These toroids are associated with intercalary heterochromatin, as revealed by ectopic pairing and weak points. Similar observations on the giant chromosomes of D. melanogaster are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号