首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Vesicular stomatitis virus (VSV) forms pseudotypes with envelope components of reticuloendotheliosis virus (REV). The VSV pseudotype possesses the limited host range and antigenic properties of REV. Approximately 70% of the VSV, Indiana serotype, and 45% of VSV, New Jersey serotype, produced from the REV strain T-transformed chicken bone marrow cells contain mixed envelope components of both VSV and REV. VSV pseudotypes with mixed envelope antigens can be neutralized with excess amounts of either anti-VSV antiserum or anti-REV antiserum.  相似文献   

7.
Mechanism of vesicular stomatitis virus mRNA decay   总被引:4,自引:0,他引:4  
The chemical and functional stability of the five vesicular stomatitis virus (VSV) messenger RNAs during infection of Chinese hamster ovary (CHO) cells was studied using the temperature-sensitive mutant, tsG114. By incubating infected cells at the nonpermissive temperature (39 °C), RNA synthesis was blocked and the five VSV mRNAs decayed chemically and functionally with a half-life of 1 to 1.5 h. However, all five VSV mRNAs were stable in vivo at 39 °C when protein synthesis was blocked with either cycloheximide or emetine. In contrast, when pactamycin was used to inhibit protein synthesis, the chemical and functional decay rates of the VSV mRNAs were indistinguishable from those observed in the absence of antibiotic. On the basis of the mode of action of each of the antibiotic inhibitors, these data imply that (a) ribosome movement along VSV mRNAs plays no role in their stabilities, and (b) each VSV mRNA contains a nuclease-sensitive site, at its 5′ end at or near the initiation site, which regulates its decay in vivo.  相似文献   

8.
9.
10.
D P Fan  B M Sefton 《Cell》1978,15(3):985-992
We have compared the mechanisms of entry into host cells of three enveloped viruses: Sendai virus, vesicular stomatitis virus (VSV) and Sindbis virus. Virus entry by membrane fusion should antigenically modify the surface of a newly infected cell in such a way that it will be killed by anti-viral antibody and complement. On the other hand, virus entry by a mechanism involving uptake by the cell of the whole virion should not make cells sensitive to antibody and complement. As expected, cells newly infected with Sendai virus were readily and completely lysed by anti-Sendai antibody and complement. In marked contrast, however, cells newly infected with either Sindbis virus or VSV were killed by anti-viral antibody and complement only when infected at an extremely high multiplicity of infection, in excess of 1000 plaque-forming units per cell. We favor the following explanation for these results with Sindbis virus and VSV: a very large majority of the Sindbis and VSV virions entered the infected cells by some means other than membrane fusion, presumably engulfment of the whole particle. Efficient entry by way of membrane fusion may therefore not be a general characteristic of enveloped viruses.  相似文献   

11.
The smallest size class of mRNA (12S) synthesized in vitro by the virion-associated RNA polymerase of vesicular stomatitis virus contains two mRNA species of similar molecular weight that code for the viral M and NS proteins. The resolution of these mRNA species was achieved by converting them to duplexes by annealing with the genome RNA, followed by RNase T2 treatment and separation in a polyacrylamide gel. Using this separation technique, the mRNA's were identified by comparing the relative resistance of their syntheses to UV irradiation of the virus. The molecular weights of these two mRNA species calculated as duplex RNAs were smaller than expected. The possible reasons for this discrepancy are discussed.  相似文献   

12.
Phenotypic mixing between Sendai virus and vesicular stomatitis virus (VSV) or the mutant VSV ts045 was studied. Conditions were optimized for double infection, as shown by immunofluorescence microscopy. Virions from double-infected cells were separated by sequential velocity and isopycnic gradient centrifugations. Two types of particles with mixed protein compositions were found. One type was VSV particles with Sendai virus spikes, i.e., phenotypically mixed particles. A second type was Sendai virus-VSV associations, which in plaque assays also behaved as phenotypically mixed particles. The ratio of VSV G protein to Sendai virus glycoproteins on the cell surface was varied, using the VSV mutant ts045 in double infections. Thus, different amounts of the VSV G protein were allowed to reach the cell surface at 32, 38, and 39 degrees C in Sendai virus-infected cells. However, a fixed number of Sendai virus spikes was always found in the ts045 virions. This represented 12 to 16% of the number of G proteins present in normal VSV. Furthermore, the yield of ts045 virions was radically reduced during double infection when the temperature was raised to block G-protein transport to the cell surface, suggesting that the Sendai virus glycoproteins were not able to compensate for G protein in budding. These results emphasize the role of the G protein in VSV assembly.  相似文献   

13.
RNA genomes from standard vesicular stomatitis virus and two defective interfering (DI) particles dI 0.33 (DI-T) and DI 0.52, were purified and digested with RNase T1. The resulting oligonucleotides were labeled at the 5' end with [32P]ATP and separated by two-dimensional electrophoresis in polyacrylamide gels. All of the major oligonucleotides containing 20 or more nucleotides were sequenced. Those oligonucleotides that were thought to be in common by their migration on polyacrylamide gels actually did have identical sequences. Those oligonucleotides thought to be unique to the DI RNAs either differed by only one nucleotide from oligonucleotides of the standard RNA or contained new sequences which were complementary to known sequences at the 5' end. These data indicate that RNAs from DI particles are not simple deletions but contain point mutations and additional complementary sequences.  相似文献   

14.
15.
J K Rose 《Cell》1978,14(2):345-353
Nucleotide sequences of the ribosome-protected translation initiation sites from the vesicular stomatitis virus (VSV) M and L protein mRNAs have been determined, completing the sequences of the sites from all the VSV mRNAs. A low level of protection at two internal AUG-containing sites in the N mRNA is also described. Small homologies are evident among some of the sites, but there are no obvious features common to all the sites other than a single AUG codon. In contrast, a large homology between the VSV M mRNA site and the alfalfa mosaic virus coat mRNA site (Koper-Zwarthoff et al., 1977) is noted. This homology suggests the existence of a common ancestral gene for these two apparently unrelated viruses. For each VSV mRNA species, the smallest sites protected in either the 40S or 80S initiation complexes are identical. These sites always contained the initiation codon, but only contained the capped 5' end in those mRNAs having the 5' end near the initiation site. If 40S ribosomes bind to the capped 5' end, either they do not protect it from nuclease digestion or the protection is only transitory in some VSV mRNAs. Consideration of the structures of the ribosome binding sites suggests that the differential effects of hypertonic shock on translation (Nuss and Koch, 1976) may be related to the distance between the 5' end of the mRNA and the initiation codon.  相似文献   

16.
The matrix (M) protein of vesicular stomatitis virus (VSV) functions from within the nucleus to inhibit bi-directional nucleocytoplasmic transport. Here, we show that M protein can be imported into the nucleus by an active transport mechanism, even though it is small enough (approximately 27 kDa) to diffuse through nuclear pore complexes. We map two distinct nuclear localization signal (NLS)-containing regions of M protein, each of which is capable of directing the nuclear localization of a heterologous protein. One of these regions, comprising amino acids 47-229, is also sufficient to inhibit nucleocytoplasmic transport. Two amino acids that are conserved among the matrix proteins of vesiculoviruses are important for nuclear localization, but are not essential for the inhibitory activity of M protein. Thus, different regions of M protein function for nuclear localization and for inhibitory activity.  相似文献   

17.
The nucleotide sequences at the 5' and 3' termini of RNA isolated from the New Jersey serotype of vesicular stomatitis virus [vsV(NJ)] and two of its defective interfering (DI) particles have been determined. The sequence differs from that previously demonstrated for the RNA from the Indiana serotype of VSV at only 1 of the first 17 positions from the 3' terminus and at only 2 of the first 17 positions from the 5' terminus. The 5'-terminal sequence of VSV(NJ) RNA is the complement of the 3'-terminal sequence, and duplexes which are 20 bases long and contain the 3' and 5' termini have been isolated from this RNA. The RNAs isolated from DI particles of VSV(NJ) have the same base sequences as do the RNAs from the parental virus. These results are in sharp contrast to those obtained with the Indiana serotype of VSV and its DI particles, in which the 3'-terminal sequences differ in 3 positions within the first 17. However, with both serotypes, the 3'-terminal sequence of the DI RNA is the complement of the 5'-terminal sequence of the RNA from the infectious virus. These findings suggest that the 3' and 5' RNA termini are highly conserved in both serotypes and that the 3' terminus of DI RNA is ultimately derived by copying the 5' end of the VSV genome, as recently proposed (D. Kolakofsky, M. Leppert, and L. Kort, in B. W. J. Mahy and R. D. Barry, ed., Negative-Strand Virus and the Host Cell, 1977; M. Leppert, L. Kort, and D. Kolakofsky, Cell 12:539-552, 1977; A. S. Huang, Bacteriol. Rev. 41:811-8218 1977).  相似文献   

18.
19.
20.
The complete nucleotide sequences of the vesicular stomatitis virus (VSV) mRNA's encoding the N and NS proteins have been determined from the sequences of cDNA clones. The mRNA encoding the N protein is 1,326 nucleotides long, excluding polyadenylic acid. It contains an open reading frame for translation which extends from the 5'-proximal AUG codon to encode a protein of 422 amino acids. The N and mRNA is known to contain a major ribosome binding site at the 5'-proximal AUG codon and two other minor ribosome binding sites. These secondary sites have been located unambiguously at the second and third AUG codons in the N mRNA sequence. Translational initiation at these sites, if it in fact occurs, would result in synthesis of two small proteins in a second reading frame. The VSV and mrna encoding the NS protein is 815 nucleotides long, excluding polyadenylic acid, and encodes a protein of 222 amino acids. The predicted molecular weight of the NS protein (25,110) is approximately one-half of that predicted from the mobility of NS protein on sodium dodecyl sulfate-polyacrylamide gels. Deficiency of sodium dodecyl sulfate binding to a large negatively charged domain in the NS protein could explain this anomalous electrophoretic mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号